Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)
Reference21 articles.
1. Cheng, H. D., Shi, X. J., Min, R., Hu, L. M., Cai, X. P., and Du, H. N., Approaches for automated detection and classification of masses in mammograms. Pattern Recogn. 39:646–668, 2006.
2. AlQoud, A., and Jaffar, M., A., Hybrid Gabor based Local Binary Patterns Texture Features for classification of Breast Mammograms. International Journal of Computer Science and Network Security. 16:2, 2016.
3. Tulio, C. S. S. A., and Rangayyan, R. M., Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features. J Electron Imaging 15(1):013019, 2006.
4. Zhang, P., Kumar, K., and Verma, B., A Hybrid Classifier for Mass Classification with Different Kinds of Features in Mammography. FSKD. LNAI 3614:316–319, 2005.
5. Swiniarski, R., Lim, HK., Independent Component Analysis, Principal Component Analysis and Rough Sets in Hybrid Mammogram Classification. International (SPIE) Symposium Medical Imaging, 2003.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献