Abstract
AbstractIn this paper, we consider the uniform norm discretization problem for general real multivariate exponential sums $$p({{\mathbf{w}}})=\sum _{0\le j\le n}c_je^{\langle \mu _j, {{\mathbf{w}}}\rangle }, \;\;\mu _j, {{\mathbf{w}}}\in \mathbb {R}^d$$
p
(
w
)
=
∑
0
≤
j
≤
n
c
j
e
⟨
μ
j
,
w
⟩
,
μ
j
,
w
∈
R
d
. Given arbitrary $$0<\tau \le 1$$
0
<
τ
≤
1
this problem consists in finding discrete point sets $$ {{\mathbf{w}}}_j\in K, 1\le j\le N$$
w
j
∈
K
,
1
≤
j
≤
N
in the compact domain $$K\subset \mathbb {R}^d, d\ge 1$$
K
⊂
R
d
,
d
≥
1
so that for every $$p({{\mathbf{w}}})$$
p
(
w
)
as above we have $$\begin{aligned} \max _{{{\mathbf{w}}}\in K}|p({{\mathbf{w}}})|\le (1+\tau )\max _{1\le j\le N}|p({{\mathbf{w}}}_j)|. \end{aligned}$$
max
w
∈
K
|
p
(
w
)
|
≤
(
1
+
τ
)
max
1
≤
j
≤
N
|
p
(
w
j
)
|
.
Using certain new Bernstein–Markov type inequalities for exponential sums it will be verified that for convex polytopes and convex polyhedral cones K in $$\mathbb {R}^d, d\ge 1$$
R
d
,
d
≥
1
there exist meshes $${{\mathbf{w}}}_1,\ldots ,{{\mathbf{w}}}_N\subset K$$
w
1
,
…
,
w
N
⊂
K
of cardinality $$\begin{aligned} N\le c\left( \frac{n}{\sqrt{\tau }}\right) ^{d}\ln ^{d}\frac{\mu _n^*}{\delta \tau }, \;\;\;\mu _n^*:=\max _{1\le j\le n}|\mu _j| \end{aligned}$$
N
≤
c
n
τ
d
ln
d
μ
n
∗
δ
τ
,
μ
n
∗
:
=
max
1
≤
j
≤
n
|
μ
j
|
for which the above inequality holds for any multivariate exponential sum p with exponents satisfying the separation condition $$|\mu _{k}-\mu _j|\ge \delta , j\ne k, \delta >0$$
|
μ
k
-
μ
j
|
≥
δ
,
j
≠
k
,
δ
>
0
. In addition, the optimality of the cardinality estimates will be also discussed.
Funder
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis