Author:
Zech Jakob,Marzouk Youssef
Abstract
AbstractFor two probability measures $${\rho }$$
ρ
and $${\pi }$$
π
with analytic densities on the d-dimensional cube $$[-1,1]^d$$
[
-
1
,
1
]
d
, we investigate the approximation of the unique triangular monotone Knothe–Rosenblatt transport $$T:[-1,1]^d\rightarrow [-1,1]^d$$
T
:
[
-
1
,
1
]
d
→
[
-
1
,
1
]
d
, such that the pushforward $$T_\sharp {\rho }$$
T
♯
ρ
equals $${\pi }$$
π
. It is shown that for $$d\in {{\mathbb {N}}}$$
d
∈
N
there exist approximations $${\tilde{T}}$$
T
~
of T, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between $${\tilde{T}}_\sharp {\rho }$$
T
~
♯
ρ
and $${\pi }$$
π
decreases exponentially. More precisely, we prove error bounds of the type $$\exp (-\beta N^{1/d})$$
exp
(
-
β
N
1
/
d
)
(or $$\exp (-\beta N^{1/(d+1)})$$
exp
(
-
β
N
1
/
(
d
+
1
)
)
for neural networks), where N refers to the dimension of the ansatz space (or the size of the network) containing $${\tilde{T}}$$
T
~
; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback–Leibler divergence. Our construction guarantees $${\tilde{T}}$$
T
~
to be a monotone triangular bijective transport on the hypercube $$[-1,1]^d$$
[
-
1
,
1
]
d
. Analogous results hold for the inverse transport $$S=T^{-1}$$
S
=
T
-
1
. The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations.
Funder
Ruprecht-Karls-Universität Heidelberg
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Reference77 articles.
1. Berg, R.V.d., Hasenclever, L., Tomczak, J.M., Welling, M.: Sylvester normalizing flows for variational inference. arXiv preprint arXiv:1803.05649 (2018)
2. Beskos, A., Jasra, A., Law, K., Marzouk, Y., Zhou, Y.: Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals. SIAM/ASA J. Uncertain. Quantif. 6(2), 762–786 (2018)
3. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009/2010)
4. Bigoni, D.: TransportMaps library, 2016–2020. http://transportmaps.mit.edu
5. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献