Probabilistic and Analytical Aspects of the Symmetric and Generalized Kaiser–Bessel Window Function

Author:

Baricz Árpád,Pogány Tibor K.

Abstract

AbstractThe generalized Kaiser–Bessel window function is defined via the modified Bessel function of the first kind and arises frequently in tomographic image reconstruction. In this paper, we study in details the properties of the Kaiser–Bessel distribution, which we define via the symmetric form of the generalized Kaiser–Bessel window function. The Kaiser–Bessel distribution resembles to the Bessel distribution of McKay of the first type, it is a platykurtic or sub-Gaussian distribution, it is not infinitely divisible in the classical sense and it is an extension of the Wigner’s semicircle, parabolic andn-sphere distributions, as well as of the ultra-spherical (or hyper-spherical) and power semicircle distributions. We deduce the moments and absolute moments of this distribution and we find its characteristic and moment generating function in two different ways. In addition, we find its cumulative distribution function in three different ways and we deduce a recurrence relation for the moments and absolute moments. Moreover, by using a formula of Ismail and May on quotient of modified Bessel functions of the first kind, we deduce a closed-form expression for the differential entropy. We also prove that the Kaiser–Bessel distribution belongs to the family of log-concave and geometrically concave distributions, and we study in details the monotonicity and convexity properties of the probability density function with respect to the argument and each of the parameters. In the study of the monotonicity with respect to one of the parameters we complement a known result of Gronwall concerning the logarithmic derivative of modified Bessel functions of the first kind. Finally, we also present a modified method of moments to estimate the parameters of the Kaiser–Bessel distribution, and by using the classical rejection method we present two algorithms for sampling independent continuous random variables of Kaiser–Bessel distribution. The paper is closed with conclusions and proposals for future works.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3