Author:
Korhonen Risto,Zhang Yueyang
Abstract
AbstractIt is shown that if $$\begin{aligned} f(z+1)^n=R(z,f), \end{aligned}$$f(z+1)n=R(z,f),where R(z, f) is rational in f with meromorphic coefficients and $$\deg _f(R(z,f))=n$$degf(R(z,f))=n, has an admissible meromorphic solution, then either f satisfies a difference linear or Riccati equation with meromorphic coefficients, or the equation above can be transformed into one in a list of ten equations with certain meromorphic or algebroid coefficients. In particular, if $$f(z+1)^n=R(z,f)$$f(z+1)n=R(z,f), where the assumption $$\deg _f(R(z,f))=n$$degf(R(z,f))=n has been discarded, has rational coefficients and a transcendental meromorphic solution f of hyper-order $$<1$$<1, then either f satisfies a difference linear or Riccati equation with rational coefficients, or the equation above can be transformed into one in a list of five equations which consists of four difference Fermat equations and one equation which is a special case of the symmetric QRT map. Solutions to all of these equations are presented in terms of Weierstrass or Jacobi elliptic functions, or in terms of meromorphic functions that are solutions to a difference Riccati equation. This provides a natural difference analogue of Steinmetz’ generalization of Malmquist’s theorem.
Funder
University of Eastern Finland (UEF) including Kuopio University Hospital
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献