Author:
Dick Josef,Ehler Martin,Gräf Manuel,Krattenthaler Christian
Abstract
AbstractTo numerically approximate Borel probability measures by finite atomic measures, we study the spectral decomposition of discrepancy kernels when restricted to compact subsets of $$\mathbb {R}^d$$
R
d
. For restrictions to the Euclidean ball in odd dimensions, to the rotation group $$\textrm{SO}(3)$$
SO
(
3
)
, and to the Grassmannian manifold $$\mathcal {G}_{2,4}$$
G
2
,
4
, we compute the kernels’ Fourier coefficients and determine their asymptotics. The $$L_2$$
L
2
-discrepancy is then expressed in the Fourier domain that enables efficient numerical minimization based on the nonequispaced fast Fourier transform. For $$\textrm{SO}(3)$$
SO
(
3
)
, the nonequispaced fast Fourier transform is publicly available, and, for $$\mathcal {G}_{2,4}$$
G
2
,
4
, the transform is derived here. We also provide numerical experiments for $$\textrm{SO}(3)$$
SO
(
3
)
and $$\mathcal {G}_{2,4}$$
G
2
,
4
.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Reference49 articles.
1. Adcock, B.: On the convergence of expansions in polyharmonic eigenfunctions. J. Approx. Theory 163(11), 1638–1674 (2011)
2. Alexander, R.: Generalized sums of distances. Pacific J. Math. 56(2), 297–304 (1975)
3. Alpay, D., Jorgensen, P.: Spectral theory for Gaussian processes: reproducing kernels, boundaries, and $$L^2$$-wavelet generators with fractional scales. Numer. Funct. Anal. Optim. 36(10), 1239–1285 (2015)
4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2005)
5. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon Press, Oxford (1983)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献