Author:
Webb Marcus,Coppé Vincent,Huybrechs Daan
Abstract
AbstractFourier series approximations of continuous but nonperiodic functions on an interval suffer the Gibbs phenomenon, which means there is a permanent oscillatory overshoot in the neighborhoods of the endpoints. Fourier extensions circumvent this issue by approximating the function using a Fourier series that is periodic on a larger interval. Previous results on the convergence of Fourier extensions have focused on the error in the $$L^2$$
L
2
norm, but in this paper we analyze pointwise and uniform convergence of Fourier extensions (formulated as the best approximation in the $$L^2$$
L
2
norm). We show that the pointwise convergence of Fourier extensions is more similar to Legendre series than classical Fourier series. In particular, unlike classical Fourier series, Fourier extensions yield pointwise convergence at the endpoints of the interval. Similar to Legendre series, pointwise convergence at the endpoints is slower by an algebraic order of a half compared to that in the interior. The proof is conducted by an analysis of the associated Lebesgue function, and Jackson- and Bernstein-type theorems for Fourier extensions. Numerical experiments are provided. We conclude the paper with open questions regarding the regularized and oversampled least squares interpolation versions of Fourier extensions.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Reference42 articles.
1. Adcock, B., Huybrechs, D.: On the resolution power of Fourier extensions for oscillatory functions. J. Comput. Appl. Math. 260, 312–336 (2014)
2. Adcock, B., Huybrechs, D.: Frames and numerical approximation II: generalized sampling (2018). arXiv:1802.01950
3. Adcock, B., Huybrechs, D.: Frames and numerical approximation. SIAM Rev. 61(3), 443–473 (2019)
4. Adcock, B., Huybrechs, D., Martín-Vaquero, J.: On the numerical stability of Fourier extensions. Found. Comput. Math. 14(4), 635–687 (2014)
5. Adcock, B., Ruan, J.: Parameter selection and numerical approximation properties of Fourier extensions from fixed data. J. Comput. Phys. 273, 453–471 (2014)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献