Abstract
AbstractWe present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces $${{\mathbb {X}}}$$
X
. First, we generalize Temlyakov’s theorem (Temlyakov in Forum Math Sigma 2(12):26, 2014) to cover situations in which the modulus of smoothness and the $${\texttt {A3}}$$
A
3
parameter are not necessarily power functions. Secondly, we apply this new theorem to the Zygmund spaces $${{\mathbb {X}}}=L^p(\log L)^{\alpha }$$
X
=
L
p
(
log
L
)
α
, with $$1<p<\infty $$
1
<
p
<
∞
and $${\alpha }\in {{\mathbb {R}}}$$
α
∈
R
, and show that, when the Haar system is used, then exact recovery of N-sparse signals occurs when the number of iterations is $$\phi (N)=O(N^{\max \{1,2/p'\}} \,(\log N)^{|{\alpha }| p'})$$
ϕ
(
N
)
=
O
(
N
max
{
1
,
2
/
p
′
}
(
log
N
)
|
α
|
p
′
)
. Moreover, this quantity is sharp when $$p\le 2$$
p
≤
2
. Finally, an expression for $$\phi (N)$$
ϕ
(
N
)
in the case of the trigonometric system is also given.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Reference16 articles.
1. Benett, C., Sharpley, R.C.: Interpolation of Operators. Academic Press, London (1988)
2. Dilworth, S., Garrigós, G., Hernández, E., Kutzarova, D., Temlyakov, V.: Lebesgue-type inequalities in greedy approximation. J. Funct. Anal. 280(5), 108885 (2021)
3. Figiel, T.: On the moduli of convexity and smoothness. Stud. Math. 56, 121–155 (1976)
4. Garrigós, G., Hernández, E., Martell, J.M.: Wavelets, Orlicz spaces, and greedy bases. Appl. Comput. Harmon. Anal. 24(1), 70–93 (2008)
5. Krasnosel’skii, M., Rutickii, J.: Convex Functions and Orlicz Spaces. Noordhoff Ltd., Groningen (1961)