Exponential ReLU DNN Expression of Holomorphic Maps in High Dimension

Author:

Opschoor J. A. A.,Schwab Ch.,Zech J.

Abstract

AbstractFor a parameter dimension $$d\in {\mathbb {N}}$$ d N , we consider the approximation of many-parametric maps $$u: [-\,1,1]^d\rightarrow {\mathbb R}$$ u : [ - 1 , 1 ] d R by deep ReLU neural networks. The input dimension d may possibly be large, and we assume quantitative control of the domain of holomorphy of u: i.e., u admits a holomorphic extension to a Bernstein polyellipse $${{\mathcal {E}}}_{\rho _1}\times \cdots \times {{\mathcal {E}}}_{\rho _d} \subset {\mathbb {C}}^d$$ E ρ 1 × × E ρ d C d of semiaxis sums $$\rho _i>1$$ ρ i > 1 containing $$[-\,1,1]^{d}$$ [ - 1 , 1 ] d . We establish the exponential rate $$O(\exp (-\,bN^{1/(d+1)}))$$ O ( exp ( - b N 1 / ( d + 1 ) ) ) of expressive power in terms of the total NN size N and of the input dimension d of the ReLU NN in $$W^{1,\infty }([-\,1,1]^d)$$ W 1 , ( [ - 1 , 1 ] d ) . The constant $$b>0$$ b > 0 depends on $$(\rho _j)_{j=1}^d$$ ( ρ j ) j = 1 d which characterizes the coordinate-wise sizes of the Bernstein-ellipses for u. We also prove exponential convergence in stronger norms for the approximation by DNNs with more regular, so-called “rectified power unit” activations. Finally, we extend DNN expression rate bounds also to two classes of non-holomorphic functions, in particular to d-variate, Gevrey-regular functions, and, by composition, to certain multivariate probability distribution functions with Lipschitz marginals.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

Reference41 articles.

1. Bölcskei, H., Grohs, P., Kutyniok, G., Petersen, P.: Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci. 1(1), 8–45 (2019). https://doi.org/10.1137/18M118709X

2. Bonito, A., DeVore, R., Guignard, D., Jantsch, P., Petrova, G.: Polynomial approximation of anisotropic analytic functions of several variables. Constr. Approx. (2020). https://doi.org/10.1007/s00365-020-09511-4

3. Boullé, N., Nakatsukasa, Y., Townsend, A.: Rational neural networks. Accepted for Publication in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada (2020). https://proceedings.neurips.cc/paper/2020/hash/a3f390d88e4c41f2747bfa2f1b5f87db-Abstract.html

4. Chemin, J.Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995). http://www.numdam.org/item/AST_1995_230_1_0

5. Chui, C.K., Li, X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70(2), 131–141 (1992). https://doi.org/10.1016/0021-9045(92)90081-X

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3