Author:
Opschoor J. A. A.,Schwab Ch.,Zech J.
Abstract
AbstractFor a parameter dimension $$d\in {\mathbb {N}}$$
d
∈
N
, we consider the approximation of many-parametric maps $$u: [-\,1,1]^d\rightarrow {\mathbb R}$$
u
:
[
-
1
,
1
]
d
→
R
by deep ReLU neural networks. The input dimension d may possibly be large, and we assume quantitative control of the domain of holomorphy of u: i.e., u admits a holomorphic extension to a Bernstein polyellipse $${{\mathcal {E}}}_{\rho _1}\times \cdots \times {{\mathcal {E}}}_{\rho _d} \subset {\mathbb {C}}^d$$
E
ρ
1
×
⋯
×
E
ρ
d
⊂
C
d
of semiaxis sums $$\rho _i>1$$
ρ
i
>
1
containing $$[-\,1,1]^{d}$$
[
-
1
,
1
]
d
. We establish the exponential rate $$O(\exp (-\,bN^{1/(d+1)}))$$
O
(
exp
(
-
b
N
1
/
(
d
+
1
)
)
)
of expressive power in terms of the total NN size N and of the input dimension d of the ReLU NN in $$W^{1,\infty }([-\,1,1]^d)$$
W
1
,
∞
(
[
-
1
,
1
]
d
)
. The constant $$b>0$$
b
>
0
depends on $$(\rho _j)_{j=1}^d$$
(
ρ
j
)
j
=
1
d
which characterizes the coordinate-wise sizes of the Bernstein-ellipses for u. We also prove exponential convergence in stronger norms for the approximation by DNNs with more regular, so-called “rectified power unit” activations. Finally, we extend DNN expression rate bounds also to two classes of non-holomorphic functions, in particular to d-variate, Gevrey-regular functions, and, by composition, to certain multivariate probability distribution functions with Lipschitz marginals.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Reference41 articles.
1. Bölcskei, H., Grohs, P., Kutyniok, G., Petersen, P.: Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci. 1(1), 8–45 (2019). https://doi.org/10.1137/18M118709X
2. Bonito, A., DeVore, R., Guignard, D., Jantsch, P., Petrova, G.: Polynomial approximation of anisotropic analytic functions of several variables. Constr. Approx. (2020). https://doi.org/10.1007/s00365-020-09511-4
3. Boullé, N., Nakatsukasa, Y., Townsend, A.: Rational neural networks. Accepted for Publication in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada (2020). https://proceedings.neurips.cc/paper/2020/hash/a3f390d88e4c41f2747bfa2f1b5f87db-Abstract.html
4. Chemin, J.Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995). http://www.numdam.org/item/AST_1995_230_1_0
5. Chui, C.K., Li, X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70(2), 131–141 (1992). https://doi.org/10.1016/0021-9045(92)90081-X
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献