Author:
Christiansen Jacob S.,Eichinger Benjamin,Rubin Olof
Abstract
AbstractThis article examines the asymptotic behavior of the Widom factors, denoted $${\mathcal {W}}_n$$
W
n
, for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom’s proposal in Widom (Adv Math 3:127–232, 1969), when dealing with a single smooth Jordan arc, $${\mathcal {W}}_n$$
W
n
converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval $$[-2,2]$$
[
-
2
,
2
]
, and we provide a complete description of the asymptotic behavior of $${\mathcal {W}}_n$$
W
n
for symmetric star graphs and quadratic preimages of $$[-2,2]$$
[
-
2
,
2
]
. We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of the conjecture posed in Christiansen et al. (Oper Theory Adv Appl 289:301–319, 2022). Lastly, we propose a possible connection between the S-property and Widom factors converging to 2.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Achieser, N.I.: Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen, I. Bull. Acad. Sci. URSS 9, 1163–1202 (1932)
2. Achieser, N.I.: Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen, II. Bull. Acad. Sci. URSS 3, 309–344 (1933)
3. Achieser, N.I.: Theory of Approximation. Frederick Ungar Publishing Co., New York (1956)
4. Alpan, G.: Extremal polynomials on a Jordan arc. J. Approx. Theory 276, 105708 (2022)
5. Alpan, G., Zinchenko, M.: On the Widom factors for $$L_p$$ extremal polynomials. J. Approx. Theory 259, 105480 (2020)