On the Omnipresence of Spurious Local Minima in Certain Neural Network Training Problems

Author:

Christof Constantin,Kowalczyk Julia

Abstract

AbstractWe study the loss landscape of training problems for deep artificial neural networks with a one-dimensional real output whose activation functions contain an affine segment and whose hidden layers have width at least two. It is shown that such problems possess a continuum of spurious (i.e., not globally optimal) local minima for all target functions that are not affine. In contrast to previous works, our analysis covers all sampling and parameterization regimes, general differentiable loss functions, arbitrary continuous nonpolynomial activation functions, and both the finite- and infinite-dimensional setting. It is further shown that the appearance of the spurious local minima in the considered training problems is a direct consequence of the universal approximation theorem and that the underlying mechanisms also cause, e.g., $$L^p$$ L p -best approximation problems to be ill-posed in the sense of Hadamard for all networks that do not have a dense image. The latter result also holds without the assumption of local affine linearity and without any conditions on the hidden layers.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

Reference56 articles.

1. Ainsworth, M., Shin, Y.: Plateau phenomenon in gradient descent training of RELU networks: explanation, quantification, and avoidance. SIAM J. Sci. Comput. 43, 3438–3468 (2021)

2. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 242–252, PMLR (2019)

3. Arjevani, Y., Field, M.: Analytic study of families of spurious minima in two-layer ReLU neural networks: a tale of symmetry II. In: Advances in Neural Information Processing Systems, vol. 34. Curran Associates, Inc. (2021)

4. Auer, P., Herbster, M., Warmuth, M.K.: Exponentially many local minima for single neurons. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 316–322. Curran Associates, Inc. (1996)

5. Benedetto, J.J., Czaja, W.: Integration and Modern Analysis. Birkhäuser Advanced Texts. Birkhäuser, Boston (2010)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the identification and optimization of nonsmooth superposition operators in semilinear elliptic PDEs;ESAIM: Control, Optimisation and Calculus of Variations;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3