Treating Agricultural Runoff with a Mobile Carbon Filtration Unit

Author:

Phillips Bryn M.ORCID,Fuller Laura B. McCalla,Siegler Katie,Deng Xin,Tjeerdema Ron S.

Abstract

AbstractSeveral classes of pesticides have been shown to impair water quality in California, including organophosphates, pyrethroids and neonicotinoids. Vegetative treatment systems (VTS) can reduce pesticide loads and associated toxicity in agricultural runoff, but many water-soluble pesticides such as neonicotinoids are not effectively treated by VTS, and VTS installation is not always an option for growers required to remove non-crop vegetation for food safety concerns. Recent studies have shown that biochar filtration can be used to remove soluble contaminants, especially when coupled with other VTS components. We evaluated a mobile carbon filter system consisting of a trailer-mounted tank containing approximately 600L (~ 180 kg) of biochar. Input water from a 437-hectare agricultural drainage was pre-filtered and treated with biochar during two multi-week study periods. Laboratory toxicity tests and chemical and nutrient analyses were conducted on input and output water. Pesticide concentrations were initially reduced by greater than 99%. Treatment efficacy declined linearly and was expected to remain at least 50% effective for up to 34 weeks. Toxicity was assessed with Ceriodaphnia dubia, Hyalella azteca and Chironomus dilutus. Significant input toxicity was reduced to non-toxic levels in 6 of 16 samples. Some input concentrations of the neonicotinoid imidacloprid and the pyrethroid cypermethrin exceeded organism-specific toxicity thresholds and benchmarks, but the overall causes of toxicity were complex mixtures of agricultural chemicals. Nutrients were not reduced by the biochar. Results demonstrate the utility of biochar in treating agricultural runoff and provide measures of the longevity of biochar under field conditions.

Funder

Anthropocene Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3