Elevated Urbanization-Driven Plant Accumulation of Metal(loid)s Including Arsenic Species and Assessment of the Kłodnica River Sediment Contamination

Author:

Jabłońska-Czapla MagdalenaORCID,Grygoyć KatarzynaORCID

Abstract

AbstractThe impact of water and bottom sediment pollution of a river subjected to a strong industrial anthropogenic pressure of metal(loid) (including arsenic and its species) accumulation in riverbank plants such as Solidago virgaurea L., Phragmites L. and Urtica dioica L. was investigated. The high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) technique was used to study organic and inorganic arsenic species in selected plants and their response to heavy metal and arsenic contamination. The modified BCR extraction results showed that arsenic was mainly bound to the mobile reducible and organic-sulfide fractions in the Kłodnica River bottom sediments. Research has shown that the bottom sediments of the Kłodnica River are contaminated with metals, including Pb, Zn, Ni, As, and among arsenic species, the As(V) form dominated quantitatively, with its highest concentration being 49.3 mg kg−1 and the organic species occurred extremely rarely. The highest concentration of arsenic, among the tested plants, occurred in Phragmites communis L. The evaluation of the bottom sediment pollution was performed using Sb/As factor, geoaccumulation index (Igeo), enrichment factor (EF) and pollution load index (PLI). The ability of the plant to assimilate metals from the substrate was studied by calculation of the bioaccumulation factor (BAF). Values of the Igeo change in a wide range from class 1 (uncontaminated to moderately polluted for Cu and Zn) at the first sampling point, to 5 (highly to extremely polluted for Ba and Fe) at the K4 sampling point. The Igeo results show an increase in the contamination with elements toward the runoff of the Kłodnica River.

Funder

Small Grant Scheme 2012; the Polish-Norwegian Research Programme

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3