Current-Dependent Resistance in TES Wiring Superimposed Nb Striplines
-
Published:2024-03-18
Issue:1-2
Volume:216
Page:1-7
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Ferrari Barusso Lorenzo,Celasco Edvige,Gallucci Giovanni,Grosso Daniele,Repetto Luca,Rigano Manuela,D’Andrea Matteo,Macculi Claudio,Torrioli Guido,Gatti Flavio
Abstract
AbstractDuring the characterization of the demonstration model of the Cryogenic AntiCoincidence (CryoAC) Detector (ACS-10), a current-dependent parasitic resistance was found in series with the TES network on board the detector. Analysis was possible because the resistance rises for currents above 11 $$\mu$$
μ
A, and is therefore not observed at low bias excitation. A comparison of measurements of the TES across its Nb wiring at different temperatures suggested that the source of resistance was in the wiring and not in the TES network. After several analysis of the wiring fabrication steps, FIB-FE-SEM studies of film sections and tests of niobium film quality, we understood that the parasitic resistance was due to point contact in the Nb step coverage caused by film cracks. The fracture was due to the wall steepness and thickness of the films, since rapid step coverage is less mechanically stable and the stress on the films is proportional to the fourth power of the thickness. Therefore, all thicknesses in the wiring were reduced to the minimum optimum step coverage values and the first negative lithography parameters were optimized to reduce the wall film angle. The samples after this optimization showed no current-dependent series resistance to TES.
Funder
ASI Università degli Studi di Genova
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. C. Macculi, A. Argan, D. Brienza, M. D’Andrea, S. Lotti, G. Minervini, L. Piro, M. Biasotti, L. Ferrari Barusso, F. Gatti, M. Rigano, G. Torrioli, M. Fiorini, S. Molendi, M. Uslenghi, E. Cavazzuti, A. Volpe, The cryogenic anticoincidence detector for ATHENA X-IFU: the project status. J. Low Temp. Phys. 199(1–2), 416–424 (2020). https://doi.org/10.1007/s10909-019-02314-3 2. D. Barret, V. Albouys, J.-W.D. Herder, L. Piro, M. Cappi, J. Huovelin, R. Kelley, J.M. Mas-Hesse, S. Paltani, G. Rauw, A. Rozanska, J. Svoboda, J. Wilms, N. Yamasaki, M. Audard, S. Bandler, M. Barbera, X. Barcons, E. Bozzo, M.T. Ceballos, I. Charles, E. Costantini, T. Dauser, A. Decourchelle, L. Duband, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, R.D. Hartog, B. Jackson, P. Jonker, C. Kilbourne, S. Korpela, C. Macculi, M. Mendez, K. Mitsuda, S. Molendi, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prêle, L. Ravera, K. Sato, J. Schaye, K. Shinozaki, K. Skup, J. Soucek, T. Thibert, J. Vink, N. Webb, L. Chaoul, D. Raulin, A. Simionescu, J.M. Torrejon, F. Acero, G. Branduardi-Raymont, S. Ettori, A. Finoguenov, N. Grosso, J. Kaastra, P. Mazzotta, J. Miller, G. Miniutti, F. Nicastro, S. Sciortino, H. Yamaguchi, S. Beaumont, E. Cucchetti, M. D’Andrea, M. Eckart, P. Ferrando, E. Kammoun, S. Lotti, J.-M. Mesnager, L. Natalucci, P. Peille, J. Plaa, F. Ardellier, A. Argan, E. Bellouard, J. Carron, E. Cavazzuti, M. Fiorini, P. Khosropanah, S. Martin, J. Perry, F. Pinsard, A. Pradines, M. Rigano, P. Roelfsema, D. Schwander, G. Torrioli, J. Ullom, I. Vera, E.M. Villegas, M. Zuchniak, F. Brachet, U.L. Cicero, W. Doriese, M. Durkin, V. Fioretti, H. Geoffray, L. Jacques, C. Kirsch, S. Smith, J. Adams, E. Gloaguen, R. Hoogeveen, P. Hulst, M. Kiviranta, J. Kuur, A. Ledot, B.-J. Leeuwen, D. Loon, B. Lyautey, Y. Parot, K. Sakai, H. Weers, S. Abdoelkariem, T. Adam, C. Adami, C. Aicardi, H. Akamatsu, P.E.M. Alonso, R. Amato, J. André, M. Angelinelli, M. Anon-Cancela, S. Anvar, R. Atienza, A. Attard, N. Auricchio, A. Balado, F. Bancel, L.F. Barusso, A. Bascuñan, V. Bernard, A. Berrocal, S. Blin, D. Bonino, F. Bonnet, P. Bonny, P. Boorman, C. Boreux, A. Bounab, M. Boutelier, K. Boyce, D. Brienza, M. Bruijn, A. Bulgarelli, S. Calarco, P. Callanan, A.P. Campello, T. Camus, F. Canourgues, V. Capobianco, N. Cardiel, F. Castellani, O. Cheatom, J. Chervenak, F. Chiarello, L. Clerc, N. Clerc, B. Cobo, O. Coeur-Joly, A. Coleiro, S. Colonges, L. Corcione, M. Coriat, A. Coynel, F. Cuttaia, A. D’Ai, F. D’anca, M. Dadina, C. Daniel, L. Dauner, N. DeNigris, J. Dercksen, M. DiPirro, E. Doumayrou, L. Dubbeldam, M. Dupieux, S. Dupourqué, J.L. Durand, D. Eckert, V. Eiriz, E. Ercolani, C. Etcheverry, F. Finkbeiner, M. Fiocchi, H. Fossecave, P. Franssen, M. Frericks, S. Gabici, F. Gant, J.-R. Gao, F. Gastaldello, L. Genolet, S. Ghizzardi, M.A.A. Gil, E. Giovannini, O. Godet, J. Gomez-Elvira, R. Gonzalez, M. Gonzalez, L. Gottardi, D. Granat, M. Gros, N. Guignard, P. Hieltjes, A.J. Hurtado, K. Irwin, C. Jacquey, A. Janiuk, J. Jaubert, M. Jiménez, A. Jolly, T. Jourdan, S. Julien, B. Kedziora, A. Korb, I. Kreykenbohm, O. König, M. Langer, P. Laudet, P. Laurent, M. Laurenza, J. Lesrel, S. Ligori, M. Lorenz, A. Luminari, B. Maffei, O. Maisonnave, L. Marelli, D. Massonet, I. Maussang, A.G. Melchor, I. Le Mer, F.J.S. Millan, J.-P. Millerioux, T. Mineo, G. Minervini, A. Molin, D. Monestes, N. Montinaro, B. Mot, D. Murat, K. Nagayoshi, Y. Nazé, L. Noguès, D. Pailot, F. Panessa, L. Parodi, P. Petit, E. Piconcelli, C. Pinto, J.M.E. Plaza, B. Plaza, D. Poyatos, T. Prouvé, A. Ptak, S. Puccetti, E. Puccio, P. Ramon, M. Reina, G. Rioland, L. Rodriguez, A. Roig, B. Rollet, M. Roncarelli, G. Roudil, T. Rudnicki, J. Sanisidro, L. Sciortino, V. Silva, M. Sordet, J. Soto-Aguilar, P. Spizzi, C. Surace, M.F. Sánchez, E. Taralli, G. Terrasa, R. Terrier, M. Todaro, P. Ubertini, M. Uslenghi, J.G.B. Vaate, D. Vaccaro, S. Varisco, P. Varnière, L. Vibert, M. Vidriales, F. Villa, B.M. Vodopivec, A. Volpe, C. Vries, N. Wakeham, G. Walmsley, M. Wise, M. Wit, G. Woźniak, The ATHENA x-ray integral field unit: a consolidated design for the system requirement review of the preliminary definition phase. Exp. Astron. 55(2), 373–426 (2023). https://doi.org/10.1007/s10686-022-09880-7 3. M. Biasotti, C. Boragno, L. Ferrari Barusso, F. Gatti, D. Grosso, M. Rigano, B. Siri, C. Macculi, M. D’Andrea, L. Piro, The phonon-mediated TES cosmic ray detector for focal plane of ATHENA x-ray telescope. J. Low Temp. Phys. 199(1–2), 225–230 (2020). https://doi.org/10.1007/s10909-020-02348-y 4. S.J. Smith, J.S. Adams, S.R. Bandler, S. Beaumont, J.A. Chervenak, E.V. Denison, W.B. Doriese, M. Durkin, F.M. Finkbeiner, J.W. Fowler, G.C. Hilton, R. Hummatov, K.D. Irwin, R.L. Kelley, C.A. Kilbourne, M.A. Leutenegger, A.R. Miniussi, F.S. Porter, C.D. Reintsema, J.E. Sadleir, K. Sakai, D.S. Swetz, J.N. Ullom, L.R. Vale, N.A. Wakeham, E.J. Wassell, M.C. Witthoeft, Performance of a broad-band, high-resolution, transition-edge sensor spectrometer for x-ray astrophysics. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021). https://doi.org/10.1109/tasc.2021.3061918 5. M. D’Andrea, K. Ravensberg, A. Argan, D. Brienza, S. Lotti, C. Macculi, G. Minervini, L. Piro, G. Torrioli, F. Chiarello, L. Ferrari Barusso, M. Biasotti, G. Gallucci, F. Gatti, M. Rigano, H. Akamatsu, J. Dercksen, L. Gottardi, F. Groote, R. Hartog, J.-W. Herder, R. Hoogeveen, B. Jackson, A. McCalden, S. Rosman, E. Taralli, D. Vaccaro, M. Wit, J. Chervenak, S. Smith, N. Wakeham, Athena X-IFU demonstration model: first joint operation of the main TES array and its cryogenic anticoincidence detector (CryoAC). J. Low Temp. Phys. 209(3–4), 433–440 (2022). https://doi.org/10.1007/s10909-022-02786-w
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|