Directional Filter Design and Simulation for Superconducting On-Chip Filter-Banks
-
Published:2024-05-04
Issue:1-2
Volume:216
Page:144-153
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Marting Louis H.,Karatsu Kenichi,Endo Akira,Baselmans Jochem J. A.,Pascual Laguna Alejandro
Abstract
AbstractMany superconducting on-chip filter-banks suffer from poor coupling to the detectors behind each filter. This is a problem intrinsic to the commonly used half-wavelength filter, which has a maximum theoretical coupling of 50 %. In this paper, we introduce a phase-coherent filter, called a directional filter, which has a theoretical coupling of 100 %. In order to study and compare different types of filter-banks, we first analyze the measured filter frequency scatter, losses, and spectral resolution of a DESHIMA 2.0 filter-bank chip. Based on measured fabrication tolerances and losses, we adapt the input parameters for our circuit simulations, quantitatively reproducing the measurements. We find that the frequency scatter is caused by nanometer-scale line width variations and that variances in the spectral resolution is caused by losses in the dielectric only. Finally, we include these realistic parameters in a full filter-bank model and simulate a wide range of spectral resolutions and oversampling values. For all cases, the directional filter-bank has significantly higher coupling to the detectors than the half-wave resonator filter-bank. The directional filter eliminates the need to use oversampling as a method to improve the total efficiency, instead capturing nearly all the power remaining after dielectric losses.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. A. Endo, K. Karatsu, Y. Tamura, T. Oshima, A. Taniguchi, T. Takekoshi, S. Asayama, T.J.L.C. Bakx, S. Bosma, J. Bueno, K.W. Chin, Y. Fujii, K. Fujita, R. Huiting, S. Ikarashi, T. Ishida, S. Ishii, R. Kawabe, T.M. Klapwijk, K. Kohno, A. Kouchi, N. Llombart, J. Maekawa, V. Murugesan, S. Nakatsubo, M. Naruse, K. Ohtawara, A. Pascual Laguna, J. Suzuki, K. Suzuki, D.J. Thoen, T. Tsukagoshi, T. Ueda, P.J. de Visser, P.P. van der Werf, S.J.C. Yates, Y. Yoshimura, O. Yurduseven, J.J.A. Baselmans, First light demonstration of the integrated superconducting spectrometer. Nat. Astron. 3(11), 989–996 (2019). https://doi.org/10.1038/s41550-019-0850-8 2. J. Redford, P.S. Barry, C.M. Bradford, S. Chapman, J. Glenn, S. Hailey-Dunsheath, R.M.J. Janssen, K.S. Karkare, H.G. LeDuc, P. Mauskopf, R. McGeehan, E. Shirokoff, J. Wheeler, J. Zmuidzinas, SuperSpec: on-chip spectrometer design, characterization, and performance. J. Low Temp. Phys. 209(3), 548–555 (2022). https://doi.org/10.1007/s10909-022-02866-x 3. G. Cataldo, E.M. Barrentine, B.T. Bulcha, N. Ehsan, L.A. Hess, O. Noroozian, T.R. Stevenson, E.J. Wollack, S.H. Moseley, E.R. Switzer, Second-generation micro-spec: a compact spectrometer for far-infrared and submillimeter space missions. Acta Astronaut. 162, 155–159 (2019). https://doi.org/10.1016/j.actaastro.2019.06.012 4. A. Pascual Laguna, K. Karatsu, D.J. Thoen, V. Murugesan, B.T. Buijtendorp, A. Endo, J.J.A. Baselmans, Terahertz band-pass filters for wideband superconducting on-chip filter-bank spectrometers. IEEE Trans. Terahertz Sci. Technol. 11(6), 635–646 (2021). https://doi.org/10.1109/TTHZ.2021.3095429 5. A. Kovács, P.S. Barry, C.M. Bradford, G. Chattopadhyay, P. Day, S. Doyle, S. Hailey-Dunsheath, M. Hollister, C. McKenney, H.G. LeDuc, N. Llombart, D.P. Marrone, P. Mauskopf, R.C. O’Brient, S. Padin, L.J. Swenson, J. Zmuidzinas, SuperSpec: Design concept and circuit simulations, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation For Astronomy VI, vol 8452 (2012), pp. 748–757. https://doi.org/10.1117/12.927160
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|