Vortex Shedding from a Microsphere Oscillating in Superfluid $$^4$$He at mK Temperatures and from a Laser Beam Moving in a Bose–Einstein Condensate

Author:

Schoepe W.ORCID

Abstract

AbstractTurbulent drag of an oscillating microsphere that is levitating in superfluid $$^4$$ 4 He at mK temperatures, is unstable slightly above a critical velocity amplitude $$v_c$$ v c . The lifetime $$\tau$$ τ of the turbulent state is determined by the number n of vortices shed per half-period. It is found that this number is identical to the superfluid Reynolds number. The possibility of moving a levitating sphere through superfluid $$^3$$ 3 He at microkelvin temperatures is considered. A laser beam moving through a Bose–Einstein condensate (BEC) (as observed by other authors) also produces vortices in the BEC. In particular, in either case, a linear dependence of the shedding frequency $$f_v$$ f v on $$\Delta v = v - v_c$$ Δ v = v - v c is observed, where v is the velocity amplitude of the sphere or the constant velocity of the laser beam above $$v_c$$ v c for the onset of turbulent flow: $$f_v = a \,\Delta v$$ f v = a Δ v , where the coefficient a is proportional to the oscillation frequency $$\omega$$ ω above some characteristic frequency $$\omega _k$$ ω k and assumes a finite value for steady motion $$\omega \rightarrow 0$$ ω 0 . A relation between the superfluid Reynolds number and the superfluid Strouhal number is presented that is different from classical turbulence.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum viscosity and the Reynolds similitude of a pure superfluid;Physical Review B;2024-01-11

2. Progress on Levitating a Sphere in Cryogenic Fluids;Journal of Low Temperature Physics;2023-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3