Low Noise Frequency-Domain Multiplexing of TES Bolometers Using SQUIDs at Sub-Kelvin Temperature

Author:

Elleflot T.ORCID,Suzuki A.,Arnold K.,Bebek C.,Cantor R. H.,Crowley K. T.,Groh J.,de Haan T.,Hornsby A.,Joseph J.,Lee A. T.,Liu T.,Montgomery J.,Russell M.,Yu Q.

Abstract

AbstractDigital Frequency-Domain Multiplexing (DfMux) is a technique that uses MHz superconducting resonators and Superconducting Quantum Interference Device (SQUID) arrays to read out sets of transition edge sensors. DfMux has been used by several Cosmic Microwave Background experiments, including most recently POLARBEAR-2 and SPT-3 G with multiplexing factors as high as 68, and is the baseline readout technology for the planned satellite mission LiteBIRD. Here, we present recent work focused on improving DfMux readout noise, reducing parasitic impedance, and improving sensor operation. We have achieved a substantial reduction in stray impedance by integrating the sensors, resonators, and SQUID array onto a single-carrier board operated at 250 mK. This also drastically simplifies the packaging of the cryogenic components and leads to better-controlled crosstalk. We demonstrate a low readout noise level of 8.6 $$\mathrm{pA/Hz}1^{1/2}$$ pA / Hz 1 1 / 2 , which was made possible by operating the SQUID array at a reduced temperature and with a low dynamic impedance. This is a factor of two improvement compared to the achieved readout noise level in currently operating Cosmic Microwave Background experiments using DfMux and represents a critical step toward maturation of the technology for the next generation of instruments.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3