Detector Array Readout with Traveling Wave Amplifiers
-
Published:2022-08-12
Issue:3-4
Volume:209
Page:658-666
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Giachero A.ORCID, Barone C., Borghesi M., Carapella G., Caricato A. P., Carusotto I., Chang W., Cian A., Gioacchino D. Di, Enrico E., Falferi P., Fasolo L., Faverzani M., Ferri E., Filatrella G., Gatti C., Giubertoni D., Greco A., Kutlu C., Leo A., Ligi C., Maccarrone G., Margesin B., Maruccio G., Matlashov A., Mauro C., Mezzena R., Monteduro A. G., Nucciotti A., Oberto L., Pagano S., Pierro V., Piersanti L., Rajteri M., Rizzato S., Semertzidis Y. K., Uchaikin S., Vinante A.
Abstract
AbstractReducing noise to the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation X-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifiers. The Detector Array Readout with Traveling Wave Amplifiers project has the goal of developing high-performing innovative traveling wave parametric amplifiers with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two different promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution, we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference27 articles.
1. P. Krantz et al., Appl. Phys. Rev. 6, 021318 (2019). https://doi.org/10.1063/1.5089550 2. J. Stehlik et al., Phys. Rev. Appl. 4, 014018 (2015). https://doi.org/10.1103/PhysRevApplied.4.014018 3. K.D. Irwin, G.C. Hilton, Top. Appl. Phys. 99, 63–149 (2005). https://doi.org/10.1007/10933596_3 4. L. Gottardi, K. Nagayashi, Appl. Sci. 11(9), 3793 (2021). https://doi.org/10.3390/app11093793 5. P. Day et al., Nature 425, 817–821 (2003). https://doi.org/10.1038/nature02037
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|