Microcalorimeter Absorber Optimization for ATHENA and LEM

Author:

Wassell Edward,Adams Joseph,Bandler Simon,Chervenak James,Cumbee Renata,Finkbeiner Fred,Fuhrman Joshua,Hull Samuel,Kelley Richard,Kilbourne Caroline,Mateo Jennette,Muramatsu Haruka,Porter Frederick,Rani Asha,Sakai Kazuhiro,Smith Stephen,Wakeham Nicholas,Yoon Sang

Abstract

AbstractHigh quantum efficiency (QE) X-ray absorbers are needed for future X-ray astrophysics telescopes. The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission requirements for the X-ray Integral Field Unit (X-IFU) instrument dictate, at their most stringent, that the absorber achieve vertical QE > 90.6% at 7 keV and low total heat capacity, 0.731 pJ/K. The absorber we have designed is 313 µm square composed of 1.05 μm Au and 5.51 μm electroplated Bi films (Barret et al. in Exp Astron 55:373–426, 2023). Overhanging the TES, the absorber is mechanically supported by 6 small legs whose 5 μm diameter is tuned to the target thermal conductance for the device. Further requirements for the absorber for X-IFU include a > 40% reflectance at wavelengths from 1 to 20 μm to reduce shot noise from infrared radiation from higher temperature stages in the cryostat. We meet this requirement by capping our absorbers with an evaporated Ti/Au thin film. Additionally, narrow gaps between absorbers are required for high fill fraction, as well as low levels of fine particulate remaining on the substrate and zero shorts between absorbers that may cause thermal crosstalk. The Light Element Mapper (LEM) is an X-ray probe concept optimized to explore the soft X-ray emission from 0.2 to 2.0 keV. These pixels for LEM require high residual resistance ratio (RRR) thin 0.5 µm Au absorbers to thermalize uniformly and narrow < 2 μm gaps between pixels for high areal fill fraction. This paper reports upon technology developments required to successfully yield arrays of pixels for both mission concepts and presents first testing results of devices with these new absorber recipes.

Funder

Goddard Space Flight Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3