Millimetre Wave Kinetic Inductance Parametric Amplification using Ridge Gap Waveguide

Author:

Banys D.ORCID,McCulloch M. A.,Sweetnam T.,Gilles V.,Piccirillo L.

Abstract

AbstractWe present the design and simulation methodology of a superconducting ridge-gap waveguide (RGWG) as a potential basis for mm-wave kinetic inductance travelling wave parametric amplifiers (KI-TWPAs). A superconducting RGWG was designed using Ansys HFSS to support a quasi-TEM mode of transmission over a bandwidth of 20–120 GHz with its internal dimensions optimised for integration with W-band rectangular waveguide. A design of an impedance loaded travelling wave structure incorporating periodic perturbations of the ridge was described. A method to simulate the nonlinear kinetic inductance via user-defined components in Keysight’s ADS was outlined, which yielded the power dependent S-parameters and parametric signal gain. A RGWG with a 30 nm NbTiN coating and 5 $$\upmu$$ μ m conductor spacing, corresponding to a kinetic inductance fraction $$\alpha \sim 60\%$$ α 60 % was used for the description of a KI-TWPA with 900 perturbations equivalent to a physical length 25 cm that achieved more than 10 dB of signal gain over a 75–110 GHz bandwidth via 4-wave mixing (4WM).

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference26 articles.

1. M. Esposito, A. Ranadive, L. Planat, N. Roch, Appl. Phys. Lett. 119, 120501 (2021). https://doi.org/10.1063/5.0064892

2. B.H. Eom, P.K. Day, H.G. LeDuc, J. Zmuidzinas, Nat. Phys. 8, 623 (2012). https://doi.org/10.1038/nphys2356

3. M.R. Vissers, R.P. Erickson, H.-S. Ku, L. Vale, X. Wu, G.C. Hilton, D.P. Pappas, Appl. Phys. Lett. 108, 012601 (2016). https://doi.org/10.1063/1.4937922

4. M. Malnou, M. Vissers, J. Wheeler, J. Aumentado, J. Hubmayr, J. Ullom, J. Gao, PRX Quantum 2, 010302 (2021). https://doi.org/10.1103/PRXQuantum.2.010302

5. S. Beurthey, N. Bömer, P. Brun, A. Caldwell, L. Chevalier, C. Diaconu, G. Dvali, P. Freire, E. Garutti, C. Gooch, A. Hambarzumjan, S. Heyminck, F. Hubaut, J. Jochum, P. Karst, S. Khan, D. Kittlinger, S. Knirck, M. Kramer, C. Krieger, T. Lasserre, C. Lee, X. Li, A. Lindner, B. Majorovits, M. Matysek, S. Martens, E. Öz, P. Pataguppi, P. Pralavorio, G. Raffelt, J. Redondo, O. Reimann, A. Ringwald, N. Roch, K. Saikawa, J. Schaffran, A. Schmidt, J. Schütte-Engel, A. Sedlak, F. Steffen, L. Shtembari, C. Strandhagen, D. Strom, and G. Wieching, Madmax status report (2020). arXiv:2003.10894 [physics.ins-det]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-loss millimeter-wave resonators with an improved coupling structure;Superconductor Science and Technology;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3