Simulated Performance of Laser-Machined Metamaterial Anti-reflection Coatings

Author:

Farias N.ORCID,Beckman S.,Lee A. T.,Suzuki A.

Abstract

AbstractLenslet-coupled antenna arrays have been used in CMB experiments and are the baseline technology for the next-generation satellite missions such as LiteBIRD and PICO. Lenslets are small hemispherical lenses mounted on the focal plane that couple light to the detectors and are typically made of silicon or alumina due to their high focusing power and low absorption loss. To minimize reflection at the vacuum-dielectric interface, lenslets require anti-reflection (AR) coatings. Metamaterials have been used in large microwave optical components because they avoid any mismatch on the thermal expansion between the lens and its coating, but so far they have only been machined on surfaces of comparatively large radius of curvature. As a first step to understand the feasibility of machining metamaterial AR layers in lenslets through laser-etching for the LiteBIRD mission, a model in ANSYS HFSS was developed. The goal of the simulation was to optimize transmission in three frequency bands while meeting assumed laser machinability constraints and optical requirements. Simulation results from flat silicon show that an AR metamaterial coating made under the assumed conditions is feasible, and the baseline parameters for further curved-surface studies are provided.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference18 articles.

1. M. Hazumi, P.A.R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A.J. Banday, R. Banerji, R.B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. De Bernardis, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F.J. Casas, A. Challinor, D. Curtis, Alessandro 19, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H.K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J.R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M.L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J.E. Gudmundsson, T. De Haan, N.W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, S. Henrot-Versillé, D. Herman, D. Herranz, C.A. Hill, G. Hilton, Y. Hirota, E. Hivon, R.A. Hlozek, Y. Hoshino, E. De La. Hoz, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C.L. Kuo, A. Kushino, L. Lamagna, J.V. Lanen, M. Lattanzi, A.T. Lee, C. Leloup, F. Levrier, E. Linder, T. Louis, G. Luzzi, T. Maciaszek, B. Maffei, D. Maino, M. Maki, H. Nishino, F. Noviello, C. O’sullivan, H. Ogawa, S. Oguri, H. Ohsaki, I.S. Ohta, N. Okada, L. Pagano, A. Paiella, M. Remazeilles, A. Ritacco, G. Roudil, J.A. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, S. Stever, R. Stompor, H. Sugai, S. Sugiyama, A. Suzuki, J. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, E. Taylor, Y. Terao, H. Thommesen, K. L Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, J. Ullom, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, I. Wehus, J. Weller, B. Westbrook, J. Wilms, B. Winter, E. J Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, M. Zannoni, A. Zonca. LiteBIRD satellite: JAXA’s new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. Technical Report (2021)

2. B. Westbrook, C. Raum, S. Beckman, A.T. Lee, N. Farias, T. Sasse, A. Suzuki, E. Kane, J.E. Austermann, J.A. Beall, S.M. Duff, J. Hubmayr, G.C. Hilton, J. Van Lanen, M.l.R. Vissers, M.R. Link, G. Jaehnig, N. Halverson, T. Ghinga, S. Stever, Y. Minami, K. L. Thompson, M. Russell, K. Arnold, J. Siebert, M. Silva-Feaver, and the LiteBIRD Joint. Study Group. Detector fabrication development for the LiteBIRD satellite mission. 1 2021. arxiv:2101.05306

3. J.W. Lamb, Miscellaneous data on materials for millimetre and submillimetre optics. Technical Report. 19, 1996

4. D. Rosen, A. Suzuki, B. Keating, W. Krantz, A.T. Lee, E. Quealy, P. L. Richards, P. Siritanasak, William Walker (Epoxy-based broadband anti-reflection coating for millimeter-wave optics, Technical Report, 2013)

5. T. Nitta, S. Sekiguchi, Y. Sekimoto, K. Mitsui, N. Okada, K. Karatsu, M. Naruse, M. Sekine, H. Matsuo, T. Noguchi, M. Seta, N. Nakai, Anti-reflection coating for cryogenic silicon and alumina lenses in millimeter-wave bands. J. Low Temp. Phys. 176(5–6), 677–683 (2014). https://doi.org/10.1007/s10909-013-1059-3 (ISSN 15737357.)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Transmission Biomimetics Structural Surfaces Produced via Ultrafast Laser Manufacturing;Biomimetics;2023-12-04

2. Development of the low frequency telescope focal plane detector modules for LiteBIRD;Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3