Lithium-Containing Crystals for Light Dark Matter Search Experiments
-
Published:2019-12-10
Issue:1-2
Volume:199
Page:510-518
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Bertoldo E.ORCID, , Abdelhameed A. H., Angloher G., Bauer P., Bento A., Breier R., Bucci C., Canonica L., D’Addabbo A., Di Lorenzo S., Erb A., Feilitzsch F. V., Ferreiro Iachellini N., Fichtinger S., Fuchs D., Fuss A., Gorla P., Hauff D., Ješkovský M., Jochum J., Kaizer J., Kinast A., Kluck H., Kraus H., Langenkämper A., Mancuso M., Mokina V., Mondragon E., Olmi M., Ortmann T., Pagliarone C., Palušová V., Pattavina L., Petricca F., Potzel W., Povinec P., Pröbst F., Reindl F., Rothe J., Schäffner K., Schieck J., Schipperges V., Schmiedmayer D., Schönert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Usherov I., Willers M., Zema V., Zeman J., Brützam M., Ganschow S.
Abstract
AbstractIn the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic techniques which employ crystalline targets. One attractive type of crystals for these experiments is those containing lithium, due to the fact that $$^7\hbox {Li}$$7Li is an ideal candidate to study spin-dependent dark matter interactions in the low mass region. Furthermore, $$^6\hbox {Li}$$6Li can absorb neutrons, a challenging background for dark matter experiments, through a distinctive signature which allows the monitoring of the neutron flux directly on site. In this work, we show the results obtained with three different detectors based on $$\hbox {LiAlO}_2$$LiAlO2, a target crystal never used before in cryogenic experiments.
Funder
Max Planck Institute for Physics
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference39 articles.
1. G. Arcadi et al., Eur. Phys. J. C 78, 203 (2018). arXiv:1703.07364 2. T.M. Undagoitia, L. Rauch, J. Phys. G 43, 013001 (2016). arXiv:1509.08767 3. EDELWEISS, Q. Arnaud et al., Phys. Rev. D 97, 022003 (2018). arXiv:1707.04308 4. SuperCDMS, R. Agnese et al., Phys. Rev. D 95, 082002 (2017). arXiv:1610.00006 5. CRESST, G. Angloher et al., Eur. Phys. J. C77, 637 (2017). arXiv:1707.06749
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|