Simulation of Radiative Transfer Within X-ray Microcalorimeter Absorbers
-
Published:2022-06-07
Issue:3-4
Volume:209
Page:464-472
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Lorenz M.ORCID, Kirsch C., Peille P., Ballhausen R., Fioretti V., Lotti S., Dauser T., Wilms J.
Abstract
AbstractWe present Monte Carlo simulations of radiative transfer within the absorbers of X-ray microcalorimeters, utilizing a numerical model for the photon propagation and photon absorption process within the absorber structure. In our model, we include effects of Compton scattering off bound electrons and fluorescence. Scattered or fluorescence photons as well as Auger and photoelectrons escaping the absorber can result in partial energy depositions. By implementing a simplified description of the physical processes compared to existing comprehensive particle transport software frameworks, our model aims to provide representative results at a small computational effort. This approach makes it possible to use our model for quick assessments, parametric studies, and application in other Monte Carlo-based instrument simulators like , a software package for X-ray astronomical instrumentation. To study the impact of the energy loss effects on the spectral response of a microcalorimeter, we apply our model to the sensors of the cryogenic X-ray spectrometer X-IFU onboard the future Athena X-ray observatory.
Funder
Bundesministerium für Wirtschaft und Technologie National Aeronautics and Space Administration Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference20 articles.
1. S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984). https://doi.org/10.1063/1.334129 2. M.E. Eckart, J.S. Adams, S.R. Bandler, S. Beaumont, J.A. Chervenak, A.M. Datesman, F.M. Finkbeiner, R. Hummatov, R.L. Kelley, C.A. Kilbourne, M.A. Leutenegger, A.R. Miniussi, S.J. Moseley, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, N.A. Wakeham, E.J. Wassell, IEEE Trans. Appl. Supercond 29, 1 (2019). https://doi.org/10.1109/TASC.2019.2903420 3. T. Dauser, S. Falkner, M. Lorenz, C. Kirsch, P. Peille, E. Cucchetti, C. Schmid, T. Brand, M. Oertel, R. Smith, J. Wilms, A&A 630, A66 (2019). https://doi.org/10.1051/0004-6361/201935978 4. C. Kirsch, M. Lorenz, P. Peille, T. Dauser, M.T. Ceballos, B. Cobo, P.E. Merino-Alonso, E. Cucchetti, S.J. Smith, L. Gottardi, R.H. den Hartog, A. Miniussi, M. Durkin, D. Prêle, J. Wilms, J. Low Temp. Phys. (2022). https://doi.org/10.1007/s10909-022-02700-4 5. D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, M. Cappi, J. Houvelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rozanska, J. Wilms, S. Bandler, M. Barbera, X. Barcons, E. Bozzo, M.T. Ceballos, I. Charles, E. Costantini, A. Decourchelle, R. den Hartog, L. Duband, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G. W. Pratt, D. Prêle, L. Ravera, K. Sato, J. Schaye, K. Shinozaki, T. Thibert, L. Valenziano, V. Valette, J. Vink, N. Webb, M. Wise, N. Yamasaki, F. Douchin, J.-M. Mesnager, B. Pontet, A. Pradines, G. Branduardi-Raymont, E. Bulbul, M. Dadina, S. Ettori, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Kaastra, P. Mazzotta, J. Miller, G. Miniutti, Y. Naze, F. Nicastro, S. Scioritino, A. Simonescu, J.M. Torrejon, B. Frezouls, H. Geoffray, P. Peille, C. Aicardi, J. André, C. Daniel, A. Clénet, C. Etcheverry, E. Gloaguen, G. Hervet, A. Jolly, A. Ledot, I. Paillet, R. Schmisser, B. Vella, J.-C. Damery, K. Boyce, M. Dipirro, S. Lotti, D. Schwander, S. Smith, B.-J. Van Leeuwen, H. van Weers, N. Clerc, B. Cobo, T. Dauser, C. Kirsch, E. Cucchetti, M. Eckart, P. Ferrando, and L. Natalucci, Proc. SPIE 10699, 106991G (2018). https://doi.org/10.1117/12.2312409.
|
|