Author:
Cheng Jiali,Ge Tong,Zhu Xiaojian,Wang Jue,Zeng Yuhao,Mu Wei,Cai Haodong,Dai Zhenyu,Jin Jin,Yang Yongkun,Hu Guang,Mao Xia,Zhou Jianfeng,Zhu Li,Huang Liang
Abstract
Abstract
Background
Acute myeloid leukemia (AML) treatment remains challenging. CD70 was reported as a promising AML-specific antigen. Preclinically, CAR T-cell with single-chain-variable fragment (scFv) or truncated CD27 targeting CD70 has been reported to treat AML. However, various disadvantages including spontaneous exhaustion, proteinase-mediated loss of functional receptors, and high immunogenicity, limited its further application to clinical settings. Alternatively, the single-variable domain on heavy chain (VHH), also known as nanobodies, with comparable binding ability and specificity, provides an optional solution.
Method
We generated CD70 knocked-out novel nanobody-based anti-CD70-CAR T-cells (nb70CAR-T) with two different VHHs for antigen detection. Next, we detected the CD70 expression on primary AML blasts by flow cytometry and associated the efficacy of nb70CAR-T with the target antigen density. Finally, epigenetic modulators were investigated to regulate the CD70 expression on AML cells to promote the functionality of nb70CAR-T.
Results
Our nb70CAR-T exhibited expected tumoricidal functionality against CD70-expressed cell lines and primary AML blasts. However, CD70 expression in primary AML blasts was not consistently high and nb70CAR-T potently respond to an estimated 40.4% of AML patients when the CD70 expression level was over a threshold of 1.6 (MFI ratio). Epigenetic modulators, Decitabine and Chidamide can up-regulate CD70 expression on AML cells, enhancing the treatment efficacy of nb70CAR-T.
Conclusion
CD70 expression in AML blasts was not fully supportive of its role in AML targeted therapy as reported. The combinational use of Chidamide and Decitabine with nb70CAR-T could provide a new potential for the treatment of AML.
Funder
National Natural Science Foundation of China
the Young Top-notch Talent Cultivation Program of Hubei Province
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Immunology,Immunology and Allergy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献