Longitudinal plasma proteomic analysis identifies biomarkers and combinational targets for anti-PD1-resistant cancer patients

Author:

Tan Qiaoyun,Gao Ruyun,Zhang Xiaomei,Yang Jianliang,Xing Puyuan,Yang Sheng,Wang Dan,Wang Guibing,Wang Shasha,Yao Jiarui,Zhang Zhishang,Tang Le,Yu Xiaobo,Han XiaohongORCID,Shi YuankaiORCID

Abstract

AbstractThe response rate of anti-PD1 therapy is limited, and the influence of anti-PD1 therapy on cancer patients is unclear. To address these challenges, we conducted a longitudinal analysis of plasma proteomic changes with anti-PD1 therapy in non-small cell lung cancer (NSCLC), alveolar soft part sarcoma (ASPS), and lymphoma patients. We included 339 plasma samples before and after anti-PD1 therapy from 193 patients with NSCLC, ASPS, or lymphoma. The plasma proteins were detected using data-independent acquisition-mass spectrometry and customable antibody microarrays. Differential proteomic characteristics in responders (R) and non-responders (NR) before and after anti-PD1 therapy were elucidated. A total of 1019 proteins were detected using our in-depth proteomics platform and distributed across 10–12 orders of abundance. By comparing the differential plasma proteome expression between R and NR groups, 50, 206, and 268 proteins were identified in NSCLC, ASPS, and lymphoma patients, respectively. Th17, IL-17, and JAK-STAT signal pathways were identified upregulated in NR group, while cellular senescence and transcriptional misregulation pathways were activated in R group. Longitudinal proteomics analysis revealed the IL-17 signaling pathway was downregulated after treatment. Consistently, many proteins were identified as potential combinatorial therapeutic targets (e.g., IL-17A and CD22). Five noninvasive biomarkers (FLT4, SFTPB, GNPTG, F5, and IL-17A) were further validated in an independent lymphoma cohort (n = 39), and another three noninvasive biomarkers (KIT, CCL3, and TNFSF1) were validated in NSCLC cohort (n = 76). Our results provide molecular insights into the anti-PD1 therapy in cancer patients and identify new therapeutic strategies for anti-PD1-resistant patients.

Funder

New National Natural Science Foundation of China

State Key Laboratory of Proteomics

Beijing Municipal Natural Science Foundation

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proteomic Investigation of Immune Checkpoints and Some of Their Inhibitors;International Journal of Molecular Sciences;2024-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3