Sensitivity of the Empirical Mode Decomposition to Interpolation Methodology and Data Non-stationarity

Author:

Z. Bahri F. M.ORCID,Sharples J. J.

Funder

University of New South Wales Canberra

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference35 articles.

1. Bahri, F.M., & Sharples, J.J. (2015). Sensitivity of the Hilbert-Huang transform to interpolation methodology: examples using synthetic and ocean data. In MODSIM2015, 21st international congress on modelling and simulation. Modelling and simulation society of Australia and New Zealand (pp. 1324–1330).

2. Chen, Q, Huang, N, Riemenschneider, S, Xu, YA. (2006). B-spline approach for empirical mode decompositions. Advances in Computational Mathematics, 24, 171–195.

3. Dätig, M, & Schlurmann, T. (2004). Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering, 31, 1783–1834.

4. Deering, R, & Kaiser, JF. (2005). The use of a masking signal to improve empirical mode decomposition. In IEEE international conference, acoustics, speech, and signal processing, 2005. Proceedings. (ICASSP’05) (Vol. 4, p. iv–485).

5. Donnelly, D. (2006). The fast Fourier and Hilbert-Huang transforms: a comparison. Computational Engineering in Systems Applications, 1, 84–88.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Empirical Mode Decomposition (EMD)-Support Vector Machine (SVM) for Multi-Fault Recognition in a Wind Turbine Gearbox;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

2. Wind Speed Prediction Using a SEEMD-LSTM Model;2023 International Conference on Engineering and Emerging Technologies (ICEET);2023-10-27

3. Wind-speed Forecasting based on Smoothing Ensemble Empirical Mode Decomposition and LSTM;2023 International Conference on Power and Renewable Energy Engineering (PREE);2023-10-20

4. Time Series Forecasting Using Smoothing Ensemble Empirical Mode Decomposition and Machine Learning Techniques;2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2022-11-16

5. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture;Remote Sensing;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3