Author:
Li Linlin,Aphale Sumeet S.,Zhu Limin
Abstract
AbstractTypically, the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first, lightly-damped resonance. To overcome this issue, a variety of open- and closed-loop control techniques that commonly combine damping and tracking actions, have been reported in literature. However, in almost all these cases, the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis. Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth. However, such a shift typically entails a major mechanical redesign of the nanopositioner. The integral resonant control (IRC) has been reported earlier to demonstrate the significant performance enhancement, robustness to parameter uncertainty, guaranteed stability and design flexibility it affords. To further exploit the IRC scheme’s capabilities, this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis, thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme. The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy. And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response. Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz. It is shown that by employing the active resonance shifting, the closed-loop positioning bandwidth is increased from 73 to 576 Hz. Consequently, the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献