Author:
Liu Ming,Zhu Jia-Ning,Popovich V. A.,Borisov E.,Mol J. M. C.,Gonzalez-Garcia Y.
Abstract
AbstractElectrochemical tests and surface analysis were applied to study the corrosion behavior and passive film characteristics of three-dimensional-printed NiTi shape memory alloys fabricated by laser-powder bed fusion (L-PBF) in artificial saliva at 37 °C. The passivity of L-PBF NiTi shows to be influenced by the process parameters and resulting morphological and physicochemical surface properties. The results show that the defects at the surface of L-PBF NiTi can promote the passivation rate in the early stages of exposure but a slowly formed passive film shows the best corrosion protection. The thickness of the passive film is positively correlated with its corrosion protective performance. The L-PBF NiTi alloy prepared at a linear energy density of 0.2 J·m−1 and volumetric energy density of 56 J·mm−3 shows the least defects and best corrosion protection. An outer Ti-rich and inner Ni-rich dense passive film could be also obtained showing higher corrosion resistance.
Graphic Abstract
Funder
Postdoctoral Council
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献