Skip to main content

Advertisement

Log in

Single Ti atoms coupled with Ti–O clusters enable low temperature hydrogen cycling by sodium alanate

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti-based catalysts are known to improve the hydrogen storage performance of NaAlH4 by facilitating the dissociation/recombination of H–H and Al–H bonds. The catalytic activity of metallic Ti species strongly depends on its particle size and dispersity. Ti clusters and even single atoms are therefore highly desirable, but their controllable fabrication has been highly challenging. Herein, we demonstrate a novel facile sonochemical synthesis of a Ti–O clusters featuring single Ti atom catalyst at room temperature. Through reducing TiCl4 by MgBu2 with ultrasound instead of heating as driving force, numerous single Ti atoms coupled with Ti–O clusters with Ti loading on graphene (Ti1/Ti–O@G) up to 22.6 wt% have been successfully obtained. The prepared Ti1/Ti–O@G contributes high reactivity and superior catalytic activity, therefore enabling full dehydrogenation of NaAlH4 at 80 °C in thermogravimetric mode and re-hydrogenation at 30 °C and 10 MPa with 4.9 wt% H2. This fact indicates for the first time that single Ti atom catalyst with high loading is highly effective in catalyzing hydrogen cycling of NaAlH4 at remarkably reduced temperatures.

Graphical abstract

摘要

众所周知,Ti基催化剂能够促进NaAlH4中H-H键和Al-H键的解离/重建,从而改善NaAlH4的储氢性能。由于Ti基催化剂的活性主要取决于其粒径大小和分散性,因此,减小Ti基催化剂的粒径至纳米团簇甚至单原子级别有望激发其高催化活性。但是,如何实现该类催化剂的可控制备一直是个大挑战。本文报道了一种在室温下通过超声化学合成制备具有Ti单原子和Ti–O团簇特性的Ti基催化剂的新方法。利用超声波作为反应驱动力引发MgBu2和TiCl4之间的氧化还原反应,避免高温加热,成功制备了石墨烯负载Ti单原子/Ti–O团簇耦合的Ti基催化剂(Ti1/Ti–O@G),其中Ti元素的负载量高达22.6 wt%。所制备的Ti1/Ti–O@G催化剂表现出优异的反应活性和催化活性,能够使NaAlH4在80 °C热重测试中完全放氢,放氢产物在30 °C和10 MPa H2条件下能够完全氢化。本研究首次阐明了提高Ti单原子催化剂的负载率能够有效降低NaAlH4材料的循环储氢温度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353. https://doi.org/10.1038/35104634.

    Article  CAS  PubMed  Google Scholar 

  2. He T, Pachfule P, Wu H, Xu Q, Chen P. Hydrogen carriers. Nat Rev Mater. 2016;1:16059. https://doi.org/10.1038/natrevmats.2016.59.

    Article  CAS  Google Scholar 

  3. Allendorf MD, Stavila V, Snider JL, Witman M, Bowden ME, Brooks K, Tran BL, Autrey T. Challenges to developing materials for the transport and storage of hydrogen. Nat Chem. 2022;14:1214. https://doi.org/10.1038/s41557-022-01056-2.

    Article  CAS  PubMed  Google Scholar 

  4. Qiu ZM, Bai Y, Gao YD, Liu CL, Ru Y, Pi YC, Zhang YZ, Luo YS, Pang H. MXenes nanocomposites for energy storage and conversion. Rare Met. 2022;41(4):1101. https://doi.org/10.1007/s12598-021-01876-0.

    Article  CAS  Google Scholar 

  5. Wang YX, Zhong SB, Sun FC. Research progress in vehicular high mass density solid hydrogen storage materials. Chin J Rare Met. 2022;46(6):796. https://doi.org/10.13373/j.cnki.cjrm.XY21120007.

    Article  Google Scholar 

  6. Shi WH, Jia CZ, Lu BW, Ma ZH. Hydrogen storage properties of MgH2 with doping catalyst. Chin J Rare Met. 2022;46(1):796. https://doi.org/10.13373/j.cnki.cjrm.XY20100027.

    Article  Google Scholar 

  7. Lin HJ, Lu YS, Zhang LT, Liiu HZ, Edalati K, Révész Á. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 2022;41(6):1797. https://doi.org/10.1007/s12598-021-01917-8.

    Article  CAS  Google Scholar 

  8. Yang H, Ding Z, Li YT, Li SY, Wu PK, Hou QH, Zheng Y, Gao B, Huo KF, Du WJ, Shaw LL. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023;42(9):2906. https://doi.org/10.1007/s12598-023-02306-z.

    Article  CAS  Google Scholar 

  9. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111. https://doi.org/10.1021/cr0501846.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Xu C, Chen CC, Wang YJ, Jiao LF, Yuan HT. Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy. 2013;38(21):8798. https://doi.org/10.1016/j.ijhydene.2013.04.109.

    Article  CAS  Google Scholar 

  11. He T, Cao H, Chen P. Complex hydrides for energy storage, conversion, and utilization. Adv Mater. 2019;31(50):1902757. https://doi.org/10.1002/adma.201902757.

    Article  CAS  Google Scholar 

  12. Ouyang LZ, Chen K, Jiang J, Yang XS, Zhu M. Hydrogen storage in light-metal based systems: a review. J Alloys Compd. 2020;829:154597. https://doi.org/10.1016/j.jallcom.2020.154597.

    Article  CAS  Google Scholar 

  13. Chen Z, Ma ZL, Zheng J, Akiba E, Li HW. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chin J Chem Eng. 2021;29:1. https://doi.org/10.1016/j.cjche.2020.08.024.

    Article  CAS  Google Scholar 

  14. Fan XL, Xiao XZ, Shao J, Zhang LT, Li SQG, HW, Wang QD, Chen LX,. Size effect on hydrogen storage properties of NaAlH4 confined in uniform porous carbons. Nano Energy. 2013;2(5):995. https://doi.org/10.1016/j.nanoen.2013.03.021.

    Article  CAS  Google Scholar 

  15. Frankcombe TJ. Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev. 2012;112(4):2164. https://doi.org/10.1021/cr2001838.

    Article  CAS  PubMed  Google Scholar 

  16. Jain A, Agarwal S, Ichikawa T. Catalytic tuning of sorption kinetics of lightweight hydrides: a review of the materials and mechanism. Catalysts. 2018;8(12):651. https://doi.org/10.3390/catal8120651.

    Article  CAS  Google Scholar 

  17. Liu YF, Ren ZH, Zhang X, Jian N, Yang YX, Gao MX, Pan HG. Development of catalyst-enhanced sodium alanate as an advanced hydrogen storage material for mobile applications. Energy Technol. 2018;6(3):487. https://doi.org/10.1002/ente.201700517.

    Article  CAS  Google Scholar 

  18. Ali NA, Ismail M. Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: a review. Int J Hydrogen Energy. 2021;46(1):766. https://doi.org/10.1016/j.ijhydene.2020.10.011.

    Article  CAS  Google Scholar 

  19. Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd. 1997;253–254:1. https://doi.org/10.1016/S0925-8388(96)03049-6.

    Article  Google Scholar 

  20. Majzoub EH, Gross KJ. Titanium–halide catalyst-precursors in sodium aluminum hydrides. J Alloys Compd. 2003;356–357:363. https://doi.org/10.1016/S0925-8388(03)00113-0.

    Article  CAS  Google Scholar 

  21. Wang P, Kang XD, Cheng HM. Improved hydrogen storage of TiF3-doped NaAlH4. ChemPhysChem. 2005;6(12):2488. https://doi.org/10.1002/cphc.200500207.

    Article  CAS  PubMed  Google Scholar 

  22. Lee GJ, Shim JH, Cho YW, Lee KS. Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder. Int J Hydrogen Energy. 2008;33(14):3748. https://doi.org/10.1016/j.ijhydene.2008.04.035.

    Article  CAS  Google Scholar 

  23. Liu YF, Zhang X, Wang K, Yang YX, Gao MX, Pan HG. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4. J Mater Chem A. 2016;4(3):1087. https://doi.org/10.1039/C5TA09400C.

    Article  CAS  Google Scholar 

  24. Xiao XZ, Fan XL, Yu K, Li SQ, Chen CP, Wang QD, Chen LX. Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C. 2009;113(48):20745. https://doi.org/10.1021/jp907258p.

    Article  CAS  Google Scholar 

  25. Wu RY, Du HF, Wang ZY, Gao MX, Pan HG, Liu YF. Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. J Power Sources. 2016;327:519. https://doi.org/10.1016/j.jpowsour.2016.07.095.

    Article  CAS  Google Scholar 

  26. Yuan ZL, Zhang DF, Fan GX, Chen YM, Fan YP, Liu BZ. N-doped carbon coated Ti3C2 MXene as a high-efficiency catalyst for improving hydrogen storage kinetics and stability of NaAlH4. Renew Energy. 2022;188:778. https://doi.org/10.1016/j.renene.2022.02.068.

    Article  CAS  Google Scholar 

  27. Li L, Zhang ZC, Wang YJ, Jiao LF, Yuan HT. Direct synthesis and dehydrogenation properties of NaAlH4 catalyzed with ball-milled Ti-B. Rare Met. 2017;36(6):517. https://doi.org/10.1007/s12598-016-0772-x.

    Article  CAS  Google Scholar 

  28. Liu YF, Liang C, Zhou H, Gao MX, Pan HG, Wang QD. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4. Chem Commun. 2011;47(6):1740. https://doi.org/10.1039/C0CC03264F.

    Article  CAS  Google Scholar 

  29. Idris NH, Anuar ASK, Ali NA, Ismail M. Effect of K2NbF7 on the hydrogen release behavior of NaAlH4. J Alloys Compd. 2021;851:156686. https://doi.org/10.1016/j.jallcom.2020.156686.

    Article  CAS  Google Scholar 

  30. Sazelee N, Mustafa NS, Yahya MS, Ismail M. Enhanced dehydrogenation performance of NaAlH4 by the addition of spherical SrTiO3. Int J Energy Res. 2021;45(6):8648. https://doi.org/10.1002/er.6401.

    Article  CAS  Google Scholar 

  31. Ali NA, Ismail M, Nasef MM, Jalil AA. Enhanced hydrogen storage properties of NaAlH4 with the addition of CoTiO3 synthesized via a solid-state method. J Alloys Compd. 2023;934(6):167932. https://doi.org/10.1016/j.jallcom.2022.167932.

    Article  CAS  Google Scholar 

  32. Huang YH, Li P, Wan Q, Zhang J, Li Y, Li RW, Dong XP, Qu XH. Improved dehydrogenation performance of NaAlH4 using NiFe2O4 nanoparticles. J Alloys Compd. 2017;709:850. https://doi.org/10.1016/j.jallcom.2017.03.182.

    Article  CAS  Google Scholar 

  33. Ismail M, Ali NA, Sazelee NA, Muhamad SU, Suwarno S, Idris NH. CoFe2O4 synthesized via a solvothermal method for improved dehydrogenation of NaAlH4. Int J Hydrogen Energy. 2022;47(97):41320. https://doi.org/10.1016/j.ijhydene.2022.01.215.

    Article  CAS  Google Scholar 

  34. Kim JW, Shim JH, Kim SC, Remhof A, Borgschulte A, Friedrichs O, Gremaud R, Pendolino F, Züttel A, Cho YW, Oh KH. Catalytic effect of titanium nitride nanopowder on hydrogen desorption properties of NaAlH4 and its stability in NaAlH4. J Power Sources. 2009;192(2):582. https://doi.org/10.1016/j.jpowsour.2009.02.083.

    Article  CAS  Google Scholar 

  35. Li L, Wang Y, Qiu FY, Wang YJ, Xu YN, An CH, Jiao LF, Yuan HT. Reversible hydrogen storage properties of NaAlH4 enhanced with TiN catalyst. J Alloys Compd. 2013;566:137. https://doi.org/10.1016/j.jallcom.2013.03.088.

    Article  CAS  Google Scholar 

  36. Zhang X, Ren ZH, Lu YH, Yao JH, Gao MX, Liu YF, Pan HG. Facile synthesis and superior catalytic activity of nano-TiN@N−C for hydrogen storage in NaAlH4. ACS Appl Mater Interfaces. 2018;10(18):15767. https://doi.org/10.1021/acsami.8b04011.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Qiu FY, Wang YP, Wang YJ, Liu G, Yan C, An CH, Xu YN, Song DW, Jiao LF, Yuan HT. Crystalline TiB2: an efficient catalyst for synthesis and hydrogen desorption/absorption performances of NaAlH4 system. J Mater Chem. 2012;22(7):3127. https://doi.org/10.1039/C1JM14936A.

    Article  CAS  Google Scholar 

  38. Zhang X, Zhang XL, Ren ZH, Hu JJ, Gao MX, Pan HG, Liu YF. Amorphous-carbon-supported ultrasmall TiB2 nanoparticles with high catalytic activity for reversible hydrogen storage in NaAlH4. Front Chem. 2020;8:2296. https://doi.org/10.3389/fchem.2020.00419.

    Article  CAS  Google Scholar 

  39. Kang XD, Wang P, Cheng HM. In situ formation of Ti hydride and its catalytic effect in doped NaAlH4 prepared by milling NaH/Al with metallic Ti powder. Int J Hydrogen Energy. 2007;32(14):2943. https://doi.org/10.1016/j.ijhydene.2006.12.006.

    Article  CAS  Google Scholar 

  40. Ren ZH, Zhang X, Li HW, Huang ZG, Hu JJ, Gao MX, Pan HG, Liu YF. Titanium hydride nanoplates enable 5wt% of reversible hydrogen storage by sodium alanate below 80 °C. Research. 2021;2021:9819176. https://doi.org/10.34133/2021/9819176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren ZH, Zhang X, Huang ZG, Hu JJ, Li YG, Zheng SY, Gao MX, Pan HG, Liu YF. Controllable synthesis of 2D TiH2 nanoflakes with superior catalytic activity for low-temperature hydrogen cycling of NaAlH4. Chem Eng J. 2022;427:131546. https://doi.org/10.1016/j.cej.2021.131546.

    Article  CAS  Google Scholar 

  42. Wang P, Kang XD, Cheng HM. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J Phys Chem B. 2005;109(43):20131. https://doi.org/10.1021/jp053152v.

    Article  CAS  PubMed  Google Scholar 

  43. Pitt MP, Vullum PE, Sørby MH, Emerich H, Paskevicius M, Webb CJ, Gray EM, Buckley CE, Walmsley JC, Holmestad R, Hauback BC. Hydrogen absorption kinetics and structural features of NaAlH4 enhanced with transition-metal and Ti-based nanoparticles. Int J Hydrogen Energy. 2012;37(20):15175. https://doi.org/10.1016/j.ijhydene.2012.08.014.

    Article  CAS  Google Scholar 

  44. Liang F, Lin J, Wu YM, Wang LM. Enhanced electrochemical hydrogen storage performance of Ti-V-Ni composite employing NaAlH4. Int J Hydrogen Energy. 2017;42(21):14633. https://doi.org/10.1016/j.ijhydene.2017.04.202.

    Article  CAS  Google Scholar 

  45. Shang Y, Pistidda C, Milanese C, Girella A, Schökel A, Le TT, Hagenah A, Metz O, Klassen T, Dornheim M. Sustainable NaAlH4 production from recycled automotive Al alloy. Green Chem. 2022;24(10):4153. https://doi.org/10.1039/D1GC04709D.

    Article  CAS  Google Scholar 

  46. Wang P, Jensen CM. Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J Phys Chem B. 2004;108(40):15827. https://doi.org/10.1021/jp047002g.

    Article  CAS  Google Scholar 

  47. Zhang X, Ren ZH, Zhang XL, Gao MX, Pan HG, Liu YF. Triggering highly stable catalytic activity of metallic titanium for hydrogen storage in NaAlH4 by preparing ultrafine nanoparticles. J Mater Chem A. 2019;7(9):4651. https://doi.org/10.1039/C9TA00748B.

    Article  CAS  Google Scholar 

  48. Fichtner M, Fuhr O, Kircher O, Rothe J. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechnology. 2003;14:778. https://doi.org/10.1088/0957-4484/14/7/314.

    Article  CAS  Google Scholar 

  49. Tang SF, Yin XP, Wang GY, Lu XL, Lu T. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019;12:457. https://doi.org/10.1007/s12274-018-2240-4.

    Article  CAS  Google Scholar 

  50. Lu Z, Liu XY, Zhang B, Gan ZR, Tang SW, Ma L, Wu TP, Nelson GJ, Qin Y, Turner CH, Lei Y. Structure and reactivity of single site Ti catalysts for propylene epoxidation. J Catal. 2019;377:419. https://doi.org/10.1016/j.jcat.2019.07.051.

    Article  CAS  Google Scholar 

  51. Liang SX, Zhu C, Zhang NT, Zhang S, Qiao BT, Liu H, Liu XY, Liu Z, Song XD, Zhang HM, Hao C, Shi YT. A novel single-atom electrocatalyst Ti1/rGO for efficient cathodic reduction in hybrid photovoltaics. Adv Mater. 2020;32(19):2000478. https://doi.org/10.1002/adma.202000478.

    Article  CAS  Google Scholar 

  52. Kaiser SK, Chen ZP, Akl DF, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev. 2020;120(21):11703. https://doi.org/10.1021/acs.chemrev.0c00576.

    Article  CAS  PubMed  Google Scholar 

  53. Hai X, Xi SB, Mitchell S, Harrath K, Xu HM, Akl DF, Kong DB, Li J, Li ZJ, Sun T, Yang HM, Cui YG, Su CL, Zhao XX, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol. 2022;17:174. https://doi.org/10.1038/s41565-021-01022-y.

    Article  CAS  PubMed  Google Scholar 

  54. Suslick KS. Sonochemistry. Science. 1990;247(4949):1439. https://doi.org/10.1126/science.247.4949.1439.

    Article  CAS  PubMed  Google Scholar 

  55. Farges F, Brown GE, Rehr JJ. Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment. Phys Rev B. 1997;56(4):1809. https://doi.org/10.1103/PhysRevB.56.1809.

    Article  CAS  Google Scholar 

  56. Zhang X, Wu RY, Wang ZY, Gao MX, Pan HG, Liu YF. Preparation and catalytic activity of a novel nanocrystalline ZrO2@C composite for hydrogen storage in NaAlH4. Chem Asian J. 2016;11(24):3541. https://doi.org/10.1002/asia.201601204.

    Article  CAS  PubMed  Google Scholar 

  57. Chaudhuri S, Graetz J, Ignatov A, Reilly JJ, Muckerman JT. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach. J Am Chem Soc. 2006;128(35):11404. https://doi.org/10.1021/ja060437s.

    Article  CAS  PubMed  Google Scholar 

  58. Gunaydin H, Houk KN, Ozoliņš V. Vacancy-mediated dehydrogenation of sodium alanate. Proc Natl Acad Sci USA. 2008;105(10):3673. https://doi.org/10.1073/pnas.0709224105.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pitt MP, Vullum PE, Sørby MH, Blanchard D, Sulic MP, Emerich H, Paskevicius M, Buckley CE, Walmsley J, Holmestad R, Hauback BC. The location of Ti containing phases after the completion of the NaAlH4+xTiCl3 milling process. J Alloys Compd. 2012;513:597. https://doi.org/10.1016/j.jallcom.2011.11.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Outstanding Youth Foundation of China (No. 52125104), the Natural Science Foundation of Zhejiang Province (No. LD21E010002), the National Natural Science Foundation of China (Nos. 52071285 and 52001277), the Fundamental Research Funds for the Central Universities (Nos. 2021FZZX001-09 and 226-2022-00246), and the National Youth Top-Notch Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Feng Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1724 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, ZH., Zhang, X., Zhang, WX. et al. Single Ti atoms coupled with Ti–O clusters enable low temperature hydrogen cycling by sodium alanate. Rare Met. 43, 2671–2681 (2024). https://doi.org/10.1007/s12598-023-02608-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02608-2

Keywords

Navigation