Author:
Qu Zhong,Li Ming,Yuan Bin,Mu Guoqing
Funder
National Natural Science Foundation of China
Science and Technology Research Program of Chongqing Municipal Education Commission
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., et al.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 29(2), 140–147 (2015)
2. Cubero-Fernandez, A., Rodriguez-Lozano, F.J., Villatoro, R., et al.: Efficient pavement crack detection and classification. EURASIP J. Image Video Process. 2017(1), 1–13 (2017)
3. Zhou, J., Huang, P.S., Chiang, F.P.: Wavelet-based pavement distress detection and evaluation. Opt. Eng. 45(2), 27007–27017 (2006)
4. Hu, Y., Zhao, C.X.: A novel LBP based methods for pavement crack detection. J. Pattern Recognit. Resear. 5(1), 140–147 (2010)
5. Zou, Q., Cao, Y., Li, Q.Q., et al.: Cracktree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)