Exact-matching algorithms using administrative health claims database equivalence factors for real-world data analysis based on the target trial emulation framework

Author:

Nishioka Yuichi,Morita Emiri,Takeshita Saki,Tamamoto Sakura,Myojin Tomoya,Noda Tatsuya,Imamura Tomoaki

Abstract

AbstractReal-world data have become increasingly important in medical science and healthcare. A new, effective, and practically feasible statistical design is needed to unlock the potential of real-world data that decision-makers and practitioners can use to meet people’s healthcare needs. In the first half of the study, we validated our proposed new method by simulation, and in the second half, we conducted a clinical study on actual real-world data. We proposed the “Exact Matching Algorithm Using Administrative Health Claims Database Equivalence Factors (AHCDEFs)” using a target trial emulation framework. The simulation trials were conducted 500 times independently, considering the misclassification and chance errors of all variables and competing events of outcome. Two conventional methods, multivariate and propensity score analyses, were compared. Next, we estimated the effect of specific health guidance provided in Japan on the prevention of diabetes onset and medical expenditures. Our proposed novel method for real-world data returns improved estimates and fewer type I errors (the probability of erroneously determining that there is a difference when, in fact, there is no difference) than conventional methods. We quantitatively demonstrated the effectiveness of specific health guidance in Japan in preventing the onset of diabetes and reducing medical expenditures during five years. We proposed a new method for analyzing real-world data and an exact-matching algorithm using AHCDEFs. The larger the number of patients available for analysis, the more the AHCDEFs that can be matched, thereby removing the influence of confounding factors. This method will generate significant evidence when applied to real-world data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3