1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)
2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB, pp. 852–863 (2004)
3. Assent, I., Krieger, R., Müller, E., Seidl, T.: INSCY: Indexing subspace clusters with in-process-removal of redundancy. In: Proceedings of the 8th IEEE International Conference on Data Mining, ICDM ’08, pp. 719–724. IEEE (2008)
4. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.: MOA: Massive online analysis, a framework for stream classification and clustering. JMLR 11, 44–50 (2010)
5. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Comm. Stat. 3(1), 1–27 (1974)