Sequencing and de novo assembly of the Koshihikari genome and identification of the genomic region related to the eating quality of cooked rice

Author:

Lee Yoon Kyung,Lee Yunjoo,Jang Su,Lee Taeyoung,Woo Mi-Ok,Seo Jeonghwan,Kim Backki,Koh Hee-JongORCID

Abstract

AbstractThe japonica rice (Oryza sativa L.) cultivar Koshihikari is considered an important breeding material with good eating quality (EQ). To effectively utilize Koshihikari in molecular breeding programs, determining its whole genome sequence including cultivar-specific segment is crucial. Here, the Koshihikari genome was sequenced using Nanopore and Illumina platforms, and de novo assembly was performed. A highly contiguous Koshihikari genome sequence was compared with Nipponbare, the reference genome of japonica. Genome-wide synteny was observed, as expected, without large structural variations. However, several gaps in alignment were detected on chromosomes 3, 4, 9, and 11. It was notable that previously identified EQ-related QTLs were found in these gaps. Moreover, sequence variations were identified in chromosome 11 at a region flanking the P5 marker, one of the significant markers of good EQ. The Koshihikari-specific P5 region was found to be transmitted through the lineage. High EQ cultivars derived from Koshihikari possessed P5 sequences; on the other hand, Koshihikari-derived low EQ cultivars didn’t contain the P5 region, which implies that the P5 genomic region affects the EQ of Koshihikari progenies. The EQ of near-isogenic lines (NILs) of Samnam (a low EQ cultivar) genetic background harboring the P5 segment was improved compared to that of Samnam in Toyo taste value. The structure of the Koshihikari-specific P5 genomic region associated with good EQ was analyzed, which is expected to facilitate the molecular breeding of rice cultivars with superior EQ.

Funder

Rural Development Administration

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3