Fine mapping of the panicle length QTL qPL5 in rice

Author:

Wang Pengfei,Ma Ling,Li Daoyang,Zhang Bo,Zhou Tianhao,Zhou Xiangchun,Xing Yongzhong

Abstract

AbstractPanicle length is a crucial trait tightly associated with spikelets per panicle and grain yield in rice. To dissect the genetic basis of panicle length, a population of 161 recombinant inbred lines (RILs) was developed from the cross between an aus variety Chuan 7 (C7) and a tropical Geng variety Haoboka (HBK). C7 has a panicle length of 30 cm, 7 cm longer than that of HBK, and the panicle length was normally distributed in the RIL population. A total of six quantitative trait loci (QTLs) for panicle length were identified, and single QTLs explained the phenotypic variance from 4.9 to 18.1%. Among them, three QTLs were mapped to the regions harbored sd1, DLT, and Ehd1, respectively. To validate the genetic effect of a minor QTL qPL5, a near-isogenic F2 (NIF2) population segregated at qPL5 was developed. Interestingly, panicle length displayed bimodal distribution, and heading date also exhibited significant variation in the NIF2 population. qPL5 accounted for 66.5% of the panicle length variance. The C7 allele at qPL5 increased panicle length by 2.4 cm and promoted heading date by 5 days. Finally, qPL5 was narrowed down to an 80-kb region flanked by markers M2197 and M2205 using a large NIF2 population of 7600 plants. LOC_Os05g37540, encoding a phytochrome signal protein whose homolog in Arabidopsis enlarges panicle length, is regarded as the candidate gene because a single-nucleotide mutation (C1099T) caused a premature stop codon in HBK. The characterization of qPL5 with enlarging panicle length but promoting heading date makes its great value in breeding early mature varieties without yield penalty in rice.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3