Delineating the elusive BaMMV resistance gene rym15 in barley by medium-resolution mapping

Author:

Wang Yaping,Habekuß Antje,Snowdon Rod J.,Ordon Frank,Perovic DraganORCID

Abstract

Abstract Barley mild mosaic virus (BaMMV), transmitted by the soil-borne protist Polymyxa graminis, has a serious impact on winter barley production. Previously, the BaMMV resistance gene rym15 was mapped on chromosome 6HS, but the order of flanking markers was non-collinear between different maps. To resolve the position of the flanking markers and to enable map-based cloning of rym15, two medium-resolution mapping populations Igri (susceptible) × Chikurin Ibaraki 1 (resistant) (I × C) and Chikurin Ibaraki 1 × Uschi (susceptible) (C × U), consisting of 342 and 180 F2 plants, respectively, were developed. Efficiency of the mechanical inoculation of susceptible standards varied from 87.5 to 100% and in F2 populations from 90.56 to 93.23%. Phenotyping of F2 plants and corresponding F3 families revealed segregation ratios of 250 s:92r (I × C, χ2 = 0.659) and 140 s:40r (C × U, χ2 = 0.741), suggesting the presence of a single recessive resistance gene. After screening the parents with the 50 K Infinium chip and anchoring corresponding SNPs to the barley reference genome, 8 KASP assays were developed and used to remap the gene. Newly constructed maps revealed a collinear order of markers, thereby allowing the identification of high throughput flanking markers. This study demonstrates how construction of medium-resolution mapping populations in combination with robust phenotyping can efficiently resolve conflicting marker ordering and reduce the size of the target interval. In the reference genome era and genome-wide genotyping era, medium-resolution mapping will help accelerate candidate gene identification for traits where phenotyping is difficult.

Funder

Bundesministerium für Bildung und Forschung

Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3