The Porosity and Permeability of Binary Grain Mixtures

Author:

Glover Paul W. J.ORCID,Luo Miao

Abstract

AbstractThe processes that control binary mixing of two sizes of grains have been investigated theoretically and validated by comparison with experimental data. These seemingly simple experiments are difficult to carry out with the degree of precision needed to test the models. We have developed a methodology allowing porosity and permeability to be measured to within ± 4.415% and ± 4.989% (at a flow rate of 5.13 cm3/s) of each value, respectively. Theoretical considerations recognise mixing processes: (1) an interstitiation process whereby small grains fit between larger grains and (2) a replacement process whereby large grains replace smaller grains and the porosity associated with them. A major result of this work is that the theoretical models describing these two processes are independent of grain size and grain shape. The latter of these two findings infers that the models developed in this work are applicable to any shape of grain or type of packing, providing that a representative porosity of each size of grain pack is known independently, either experimentally or theoretically. Experimental validation has shown that the newly developed relationships for porosity described measurements of porosity for near-ideal binary mixtures extremely well, confirming that porosity is always reduced by binary mixing, and that the degree of reduction depends upon the size of the ratio between the two grain sizes. Calculation of permeability from the packing model has also been done. Six different permeability estimation methods have been used. It was found that the most accurate representations of the experimental permeability were obtained (1) when the exact RGPZ (Revil, Glover, Pezard, Zamora) method was used with the porosity mixing models developed in this work and (2) when the exact RGPZ method was used with the weighted geometric mean to calculate a representative grain size.

Funder

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3