Prediction of 3D Velocity Field of Reticulated Foams Using Deep Learning for Transport Analysis

Author:

Ko Danny D.ORCID,Ji HangjieORCID,Ju Y. SungtaekORCID

Abstract

AbstractData-driven deep learning models are emerging as a new method to predict the flow and transport through porous media with very little computational power required. Previous deep learning models, however, experience difficulty or require additional computations to predict the 3D velocity field which is essential to characterize porous media at the pore scale. We design a deep learning model and incorporate a physics-informed loss function that enforces the mass conservation for incompressible flows to relate the spatial information of the 3D binary image to the 3D velocity field of porous media. We demonstrate that our model, trained only with synthetic porous media as binary data without additional image processing, can predict the 3D velocity field of real reticulated foams which have microstructures different from porous media that were studied in previous works. Our study provides deep learning framework for predicting the velocity field of porous media and conducting subsequent transport analysis for various engineering applications. As an example, we conduct heat transfer analysis using the predicted velocity fields and demonstrate the accuracy and advantage of our deep learning model.

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3