Abstract
AbstractPreviously performed experiments on flow through an ordered porous media cell with tomographic particle image velocimetry reveal a complex three-dimensional steady-state flow pattern. This flow pattern emerge in the region where inertial structures have been previously reported for a wide range of packings. The onset of these steady-state inertial flow structures is here scrutinized for three different types of packing using a finite difference method. It is concluded that the onset of the flow structure coincides with a symmetry break in the flow field and discontinuities in the pressure drop, volume averaged body forces and heat transfer. A quantity for identifying the transition is proposed, namely the pressure integral across the solid surfaces. It is also shown that the transition can both increase and decrease the heat transfer dependent on the actual geometry of the porous medium.
Funder
Vetenskapsrådet
Lulea University of Technology
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献