Two Film Approach to Continuum Scale Mixing and Dispersion with Equilibrium Bimolecular Reaction

Author:

Mathias Simon A.ORCID,Bolster Diogo,Veremieiev Sergii

Abstract

AbstractReliable reactive transport models require careful separation of mixing and dispersion processes. Here we treat displacing and displaced fluids as two separate fluid phases and invoke Whitman’s classical two-film theory to model mass transfer between the two phases. We use experimental data from Gramling’s bimolecular reaction experiment to assess model performance. Gramling’s original model involved just three coupled PDEs. In this context, our new formulation leads to a set of seven coupled PDEs but only requires the specification of two extra parameters, associated with the mass transfer coefficient and its dependence on time. The two film mass transfer model provides a simple and theoretically based method for separating mixing from dispersion in Eulerian continuum-scale methods. The advantage of this approach over existing methods is that it enables the simulation of equilibrium chemical reactions without having to invoke unrealistically small reaction rate coefficients. The comparison with Gramling’s experimental data confirms that our proposed method is suitable for simulating realistic and complicated bimolecular reaction behaviour. However, further work is needed to explore alternative methods for avoiding the need of a time-dependent mass transfer rate coefficient.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3