Mixing in Porous Media: Concepts and Approaches Across Scales

Author:

Dentz MarcoORCID,Hidalgo Juan J.,Lester Daniel

Abstract

AbstractThis review provides an overview of concepts and approaches for the quantification of passive, non-reactive solute mixing in steady uniform porous media flows across scales. Mixing in porous media is the result of the interaction of spatial velocity fluctuations and diffusion or local-scale dispersion, which may lead to the homogenization of an initially segregated system. Velocity fluctuations are induced by spatial medium heterogeneities at the pore, Darcy or regional scales. Thus, mixing in porous media is a multiscale process, which depends on the medium structure and flow conditions. In the first part of the review, we discuss the interrelated processes of stirring, dispersion and mixing, and review approaches to quantify them that apply across scales. This implies concepts of hydrodynamic dispersion, approaches to quantify mixing state and mixing dynamics in terms of concentration statistics, and approaches to quantify the mechanisms of mixing. We review the characterization of stirring in terms of fluid deformation and folding and its relation with hydrodynamic dispersion. The integration of these dynamics to quantify the mechanisms of mixing is discussed in terms of lamellar mixing models. In the second part of this review, we discuss these concepts and approaches for the characterization of mixing in Poiseuille flow, and in porous media flows at the pore, Darcy and regional scales. Due to the fundamental nature of the mechanisms and processes of mixing, the concepts and approaches discussed in this review underpin the quantitative analysis of mixing phenomena in porous media flow systems in general.

Funder

Agencia Estatal de Investigación

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3