Detailed Assessment of Compositional and Interfacial Tension Effects on the Fluid Behaviour During Immiscible and Near-Miscible CO2 Continuous and WAG Displacements

Author:

Wang GangORCID,Pickup Gillian E.,Sorbie Kenneth S.,Mackay Eric J.

Abstract

AbstractThis study seeks to improve numerical simulations of the key physics occurring in CO2 enhanced oil recovery (CO2-EOR) processes, with a particular focus on the transition from immiscible to miscible displacements. In the previous work, we have investigated interactions between compositional effects and the underlying heterogeneities of the flow field in near-miscible floods (Wang et al. in Transp Porous Media 129(3):743–759, 2019a). In this current study, we have further analysed the effects of reduction in interfacial tension (IFT) on the flow behaviour, as motivated by the study on the film-flow mechanism previously presented by Sorbie and van Dijke (SPE improved oil recovery symposium, Society of Petroleum Engineers, 2010). We identify two clear mechanisms of oil recovery that may occur in near-miscible CO2 (or other gas) injection processes, which we denote, MCE, as oil stripping or conventional compositional effects, and MIFT as lower IFT oil film-flow effects. The latter MIFT effects are described by an enhanced hydrocarbon relative permeability in the near-miscible three-phase relative permeabilities (3PRP). Various combinations between the MCE and MIFT mechanisms were tested by numerical simulations to evaluate the impact of each mechanism on the flow behaviour, i.e. their separate and joint effects on quantities such as the local oil displacement efficiency, phase flow vectors and the ultimate oil recovery. When acting in combination, the oil stripping and IFT effects can greatly improve the local displacement performance even when viscous fingering flow occurs. Viscous fingering is well known to lead to bypassed oil in the “non-preferential” flow paths between the main fingers. We show that the remaining oil in these non-preferential flow paths (i.e. bypassed oil) can be efficiently recovered by the combined MCE and MIFT mechanisms, but only with the application of water alternating gas (WAG). In contrast to oil stripping effects, the IFT effect is not dependent on continuous contact between oil and CO2. Instead, the remaining oil is mobilized by gas as the IFT is reduced and can be efficiently produced by subsequent water injection. This MIFT mechanism has much less impact in cases with continuous CO2 injection compared to its efficiency in WAG. This is because during continuous injection, gas fingers are dominant in the preferential flow paths, and therefore the local displacement efficiency is very good, but only in these preferential routes. On the other hand, WAG is able to make full use of the IFT effects because of its relatively stable displacing front, which allows the MIFT mechanism to contribute. In this study, the effects of using different three-phase relative permeability methods were investigated and, as expected, different methods yielded different results. However, an important observation is that when IFT effects (MIFT) were included, there was much less difference in the final oil recovery using the different 3PRP models; our analysis shows why this is the case.

Funder

CMG Reservoir Simulation Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3