Apparent Liquid Permeability in Mixed-Wet Shale Permeable Media

Author:

Fan DianORCID,Ettehadtavakkol Amin,Wang Wendong

Abstract

AbstractApparent liquid permeability (ALP) in ultra-confined permeable media is primarily governed by the pore confinement and fluid–rock interactions. A new ALP model is required to predict the interactive effect of the above two on the flow in mixed-wet, heterogeneous nanoporous media. This study derives an ALP model and integrates the compiled results from molecular dynamics (MD) simulations, scanning electron microscopy, atomic force microscopy, and mercury injection capillary pressure. The ALP model assumes viscous forces, capillary forces, and liquid slippage in tortuous, rough pore throats. Predictions of the slippage of water and octane are validated against MD data reported in the literature. In up-scaling the proposed liquid transport model to the representative-elementary-volume scale, we integrate the geological fractals of the shale rock samples including their pore size distribution, pore throat tortuosity, and pore-surface roughness. Sensitivity results for the ALP indicate that when the pore size is below 100 nm pore confinement allows oil to slip in both hydrophobic and hydrophilic pores, yet it also restricts the ALP due to the restricted intrinsic permeability. The ALP reduces to the well-established Carman–Kozeny equation for no-slip viscous flow in a bundle of capillaries, which reveals a distinguishable liquid flow behavior in shales versus conventional rocks. Compared to the Klinkenberg equation, the proposed ALP model reveals an important insight into the similarities and differences between liquid versus gas flow in shales.

Funder

University College London

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3