The Mechanism for Improved Polymer Gel Blocking During Low-Salinity Waterfloods, Investigated Using Positron Emission Tomography Imaging

Author:

Brattekås BergitORCID,Seright Randy

Abstract

AbstractPolymer gels can be placed in fractures within subsurface reservoirs to improve sweep efficiency during subsequent floods, and its success is largely determined by the gel’s ability to completely occupy the fracture volume. Gel volumetric properties may be influenced by mechanical and chemical conditions. In this work, gel volume sensitivity to salinity contrast is investigated. Previous bulk gel studies showed that water-based gel swelled in contact with lower-salinity water and shrunk in contact with higher-salinity water. Recent core-scale experiments demonstrated that gel blocking efficiency after rupture was also impacted by the salinity of the injected water phase. Gel treatments (after gel rupture) become less efficient in controlling fracture flow with time and water throughput during water injection without salinity contrasts. However, by reducing the salinity of the injected water phase with respect to the gel, blocking efficiency may be maintained, or even improved, over time. The coupling between gel deformation during swelling/shrinking and dynamic fluid flow is complex and can initiate changes in mechanical or transport properties, included formation of fluid flow paths through the gel that are not easily distinguished during conventional core floods. In-situ imaging by positron emission tomography (PET) was utilized to gain access to local flow patterns in this work, and combined with pressure measurements to characterize complex flow phenomena in a fractured, gel-filled system. Gel rupture was quantified several consecutive times during low-salinity waterflooding. Increasing rupture pressures indicates continuous gel strengthening during low-salinity water injection. PET imaging revealed that gel swelling occurred during low-salinity waterfloods, to constrict water pathways through the fracture. Gel swelling was sufficient to restrict fracture flow completely, and injected water was diverted into the rock matrix adjacent to the fracture. Injected water continued to pass through gel at elevated pressure gradients, but continuous flow paths did not form. This observation supports the notion of gel as a compressible, porous medium.

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3