Two-Phase Flow Mechanisms Controlling CO2 Intrusion into Shaly Caprock

Author:

Kivi I. R.ORCID,Makhnenko R. Y.,Vilarrasa V.

Abstract

AbstractGeologic carbon storage in deep saline aquifers has emerged as a promising technique to mitigate climate change. CO2 is buoyant at the storage conditions and tends to float over the resident brine jeopardizing long-term containment goals. Therefore, the caprock sealing capacity is of great importance and requires detailed assessment. We perform supercritical CO2 injection experiments on shaly caprock samples (intact caprock and fault zone) under representative subsurface conditions. We numerically simulate the experiments, satisfactorily reproducing the observed evolution trends. Simulation results highlight the dynamics of CO2 flow through the specimens with implications to CO2 leakage risk assessment in field practices. The large injection-induced overpressure drives CO2 in free phase into the caprock specimens. However, the relative permeability increase following the drainage path is insufficient to provoke an effective advancement of the free-phase CO2. As a result, the bulk CO2 front becomes almost immobile. This implies that the caprock sealing capacity is unlikely to be compromised by a rapid capillary breakthrough and the injected CO2 does not penetrate deep into the caprock. In the long term, the intrinsically slow molecular diffusion appears to dominate the migration of CO2 dissolved into brine. Nonetheless, the inherently tortuous nature of shaly caprock further holds back the diffusive flow, favoring safe underground storage of CO2 over geological time scales.

Funder

h2020 european research council

US DOE

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3