A Statistical Finite Element Method Integrating a Plurigaussian Random Field Generator for Multi-scale Modelling of Solute Transport in Concrete

Author:

Ricketts Evan JohnORCID,Freeman Brubeck LeeORCID,Cleall Peter JohnORCID,Jefferson AnthonyORCID,Kerfriden PierreORCID

Abstract

AbstractA new model for the multi-scale simulation of solute transport in concrete is presented. The model employs plurigaussian simulations to generate stochastic representations of concrete micro- and meso-structures. These are idealised as two-phase medium comprising mortar matrix and pores for the micro-structure, and mortar and large aggregate particles for the meso-structure. The generated micro- and meso-structures are employed in a finite element analysis for the simulation of steady-state diffusion of solutes. The results of the simulations are used to calculate effective diffusion coefficients of the two-phase micro- and meso-structures, and in turn, the effective diffusion coefficient at the macro-scale at which the concrete material is considered homogenous. Multiple micro- and meso-structures are generated to account for uncertainty at the macro-scale. In addition, the level of uncertainty in the calculated effective diffusion coefficients is quantified through a statistical analysis. The numerical predictions are validated against experimental observations concerning the diffusion of chloride through a concrete specimen, suggesting that the generated structures are representative of the pore-space and coarse aggregate seen at the micro- and meso-scales, respectively. The method also has a clear advantage over many other structural generation methods, such as packing algorithms, due to its low computational expense. The stochastic generation method has the ability to represent many complex phenomena in particulate materials, the characteristics of which may be controlled through the careful choice of intrinsic field parameters and lithotype rules.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3