Random Mixing: An Approach to Inverse Modeling for Groundwater Flow and Transport Problems

Author:

Bárdossy András,Hörning Sebastian

Abstract

Abstract This paper presents a novel methodology for inverse modeling of groundwater flow and transport problems in a Monte Carlo framework, i.e., multiple solutions to the inverse problem are generated. The methodology is based on the concept of random mixing of spatial random fields. The conditional target hydraulic transmissivity field is obtained as a linear combination of unconditional spatial random fields. The corresponding weights of the linear combination are selected such that the spatial variability of the hydraulic transmissivities as well as the actual observed transmissivity values are reproduced. The constraints related to the hydraulic head and contaminant concentration observations are nonlinear. In order to fulfill these constraints, a specific property of the presented approach is used. A connected domain of fields fulfilling all linear constraints is identified. This domain includes an infinite number of realizations, and in this domain, the head and concentration deviations are minimized using standard continuous optimization techniques. The methodology uses spatial copulas to describe the spatial dependence structure. A combination with multiple point statistics allows inversion under specific structural constraints.

Funder

NUPUS

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3