Transport and Fate of Ureolytic Sporosarcina pasteurii in Saturated Sand Columns: Experiments and Modelling

Author:

Sang GuijieORCID,Lunn Rebecca J.,El Mountassir Grainne,Minto James M.

Abstract

Abstarct Despite a broad application of ureolytic bacteria in many bioremediation and biocementation processes, very limited studies have reported their transport and retention behaviors under various physical–chemical–biological conditions. In this study, we report transport and retention of Sporosarcina pasteurii in saturated sand, based on a series of column breakthrough experiments under different conditions including ionic strengths (ISs: 0.5 mM–1 M), flow velocity (50, 100, 200 cm/h), bacteria optical density (OD600 = 1.0, 0.48), column length (280 mm, 150 mm), and changes in IS conditions (0.5 M CaCl2 or deionised water). We use a two-site kinetic model, representing (1) attachment on grain surfaces, and (2) straining at crevices and constrictions, to quantify and predict the bacterial attachment and straining. Model parameters were calibrated by tracer (NaCl) breakthrough curves (BTCs) and bacteria BTCs at different IS/velocity conditions. The model was then applied to successfully predict the bacteria BTCs at lower initial bacteria density (OD600 = 0.48) and for shorter column lengths (150 mm). We demonstrated that higher ionic strength (from 0.5 to 1000 mM) dramatically enhanced the retention efficiency of S. pasteurii through an enhancement of attachment (from 9.4 to 69.6%) and straining (from 8.1 to 34.2%), whilst the bacterial survival and the urease activity were unaffected at high IS conditions (500 and 1000 mM NaCl) within 5 h. Increasing flow velocity (from 50 to 200 cm/h) caused a decrease in attachment (from 39.5 to 22.4%) and decrease in straining (from 40.5 to 19.3%) as a result of the increased hydrodynamic shear forces, which tends to reduce the attachment at the secondary minimum and decrease the extent of flow stagnation regions for straining. Lower initial bacteria OD600 (from 1.0 to 0.48) enhanced the attachment (from 31.8 to 40.9%) and the straining (from 22.9 to 42.2%) as a result of reducing the site-blockage effect. In addition, 0.5 M CaCl2 with a stronger IS increased the retention of in the column, whilst deionised water with a lower IS caused bacterial release. These findings provide useful information for a better understanding of the transport and fate of Sporosarcina pasteurii in saturated soil, and can be used to optimise bioaugmentation strategy and cementation efficiency for soil improvement. Article Highlights Transport of S. pasteurii in sands is highly affected by ionic strength, flow velocity, bacteria density, and even column size Straining was enhanced (from 8.1% to 34.2%) if increasing IS (from 0.5 to 500 mM) without affecting bacterial survival Bacteria coagulation among 2–3 bacterial cells occurs under ISs of 500 and 1000 mM without forming large flocculation

Funder

Royal Academic of Engineering Research Chair

Engineering and Physical Sciences Research Council (EPSRC) Capital Award

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3