Quantifying the Permeability Enhancement from Blast-Induced Microfractures in Porphyry Rocks Using a Cumulant Lattice Boltzmann Method

Author:

Mitchell T. R.ORCID,Roslin A.ORCID,Łaniewski-Wołłk Ł.ORCID,Onederra I.ORCID,Leonardi C. R.ORCID

Abstract

AbstractThe permeability of rocks is important in a range of geoscientific applications, including $$\hbox {CO}_{2}$$ CO 2 sequestration, geothermal energy extraction, and in situ mineral recovery. This work presents an investigation of the change in permeability in porphyry rock samples due to blast-induced fracturing. Two samples were analysed before and after exposure to stress waves induced by the detonation of an explosive charge. Micro-computed tomography was used to image the interior of the samples at a pixel resolution of $$10.3\,\mu m$$ 10.3 μ m . The images were segmented into void, matrix, and grain to help quantify the differences in the rock samples. Following this, they were binarised as void or solid and the cumulant lattice Boltzmann method (LBM) was applied to simulate the flow of fluid through the connected void space. A correction required with the use of inlet and outlet reservoirs in computational permeability assessment was also proposed. Interrogation of the steady-state flow field allowed the pre- and post-loading permeability to be extracted. Conclusions were then drawn as to the effectiveness of blasting for enhancing fluid accessibility via the generation of microfractures in the rock matrix within the vicinity of a detonated charge. This paper makes contributions in three fundamental areas relating to the numerical assessment of permeability and the enhancement of fluid accessibility in low-porosity rocks. Firstly, a correction factor was proposed to account for the reservoirs commonly imposed on digitised rock samples when investigating sample permeability through numerical methods. Secondly, it validates the benefits of the LBM in handling complex geometries that would be intractable with conventional computational fluid dynamics methods that require body-fitted meshing. This is done with a novel implementation of the cumulant LBM in the open-source TCLB code. Finally, the improvement in fluid accessibility in low-permeability rock samples was shown through the assessment of multiple regions within two blasted samples. It was found that the blast-induced loading can generate extended microfractures that results in multiple orders of magnitude of permeability enhancement if the target rock possesses existing weaknesses and/or mineralisation.

Funder

BHP

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Reference44 articles.

1. Adams, T.F., Schmidt, S.C., Carter, W.J.: Permeability enhancement using explosive techniques. J. Energy Resour. Technol. 103, 110–118 (1981). https://doi.org/10.1115/1.3230822

2. Amankwah, A., Aldrich, C.: Rock image segmentation using watershed with shape markers. 2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR) , 1–7 https://doi.org/10.1109/AIPR.2010.5759719 (2010)

3. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—Part I: imaging and segmentation. Computers & Geosciences 50, 25–32. https://doi.org/10.1016/j.cageo.2012.09.005. benchmark problems, datasets and methodologies for the computational geosciences (2013a)

4. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—Part II: computing effective properties. Computers & Geosciences 50, 33–43. https://doi.org/10.1016/j.cageo.2012.09.008. benchmark problems, datasets and methodologies for the computational geosciences (2013b)

5. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—Part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013). https://doi.org/10.1016/j.cageo.2012.09.005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3