Comparison of Lattice Boltzmann and Boundary Element Methods for Stokes and Visco-Inertial Flow in a Two-Dimensional Porous Medium

Author:

Hassard Patrick,Turner Ian,Lester Daniel

Abstract

AbstractIn porous media, limitations imposed by macroscale laws can be avoided with a dual-scale model, in which the pore-scale phenomena of interest are modelled directly over a large number of realisations. Such a model requires a robust, accurate and efficient pore-scale solver. We compare the boundary element method (BEM) and two variants of the lattice Boltzmann method (LBM) as pore-scale solvers of 2D incompressible flow. The methods are run on a number of test cases and the performance of each simulation is assessed according to the mean velocity error and the computational runtime. Both the porous geometry (porosity, shape and complexity), and the Reynolds number (from Stokes to visco-inertial flow) are varied between the test cases. We find that, for Stokes flow, BEM provides the most efficient and accurate solution in simple geometries (with small boundary length) or when a large runtime is practical. In all other situations we consider, one of the variants of LBM performs best. We furthermore demonstrate that these findings also apply in a dual-scale model of Stokes flow through a locally-periodic medium.

Funder

Australian Research Council

Queensland University of Technology: Industry Doctoral Training Centre

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3