Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities

Author:

Gonzalez-Nicolas AnaORCID,Bilgic Deborah,Kröker IljaORCID,Mayar Assem,Trevisan LucaORCID,Steeb HolgerORCID,Wieprecht Silke,Nowak WolfgangORCID

Abstract

AbstractSeveral environmental phenomena require monitoring time-dependent densities in porous media, e.g., clogging of river sediments, mineral dissolution/precipitation, or variably-saturated multiphase flow. Gamma-ray attenuation (GRA) can monitor time-dependent densities without being destructive or invasive under laboratory conditions. GRA sends gamma rays through a material, where they are attenuated by photoelectric absorption and then recorded by a photon detector. The attenuated intensity of the emerging beam relates to the density of the traversed material via Beer–Lambert’s law. An important parameter for designing time-variable GRA is the exposure time, the time the detector takes to gather and count photons before converting the recorded intensity to a density. Large exposure times capture the time evolution poorly (temporal raster error, inaccurate temporal discretization), while small exposure times yield imprecise intensity values (noise-related error, i.e. small signal-to-noise ratio). Together, these two make up the total error of observing time-dependent densities by GRA. Our goal is to provide an optimization framework for time-dependent GRA experiments with respect to exposure time and other key parameters, thus facilitating neater experimental data for improved process understanding. Experimentalists set, or iterate over, several experimental input parameters (e.g., Beer–Lambert parameters) and expectations on the yet unknown dynamics (e.g., mean and amplitude of density and characteristic time of density changes). We model the yet unknown dynamics as a random Gaussian Process to derive expressions for expected errors prior to the experiment as a function of key experimental parameters. Based on this, we provide an optimization framework that allows finding the optimal (minimal-total-error) setup and demonstrate its application on synthetic experiments.

Funder

Deutsche Forschungsgemeinschaft

Germany's Excellence Strategy

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3